Skip to main content
Log in

Discrete version of Wiener-Khinchin theorem for Chebyshev’s spectrum of electrochemical noise

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A discrete version of Wiener-Khinchin theorem for Chebyshev’s spectrum of electrochemical noise is developed. Based on the discrete version of Wiener-Khinchin theorem, the theoretical discrete Chebyshev spectrum for the Markov random process is calculated. It is characterized by two parameters: the dispersion and the relaxation frequency (or relaxation time). The noise of corrosion process and the noise of recording equipment are measured. Using the theoretical Chebyshev spectrum, the Markov parameters were found both for the noise of the corrosion process and for the noise of the measuring equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bosch RW, Cottis RA, Csecs K, Dorsch T, Dunbar L, Heyn A, Macak J (2014) Reliability of electrochemical noise measurements: results of round-robin testing on electrochemical noise. Electrochim Acta 120:379–389. https://doi.org/10.1016/j.electacta.2013.12.093

    Article  CAS  Google Scholar 

  2. Mansfeld F, Sun Z, Hsu CH, Nagiub A (2001) Concerning trend removal in electrochemical noise measurements. Corros Sci 43(2):341–352. https://doi.org/10.1016/S0010-938X(00)00064-0

    Article  CAS  Google Scholar 

  3. Bertocci U, Huet F, Nogueira RP, Rousseau P (2002) Drift removal procedures in the analysis of electrochemical noise. Corrosion 58(4):337–347. https://doi.org/10.5006/1.3287684

    Article  CAS  Google Scholar 

  4. Huang JY, Qiu YB, Guo XP (2010) Comparison of polynomial fitting and wavelet transform to remove drift in electrochemical noise analysis. Corros Eng Sci Technol 45(4):288–294. https://doi.org/10.1179/147842208X338956

    Article  CAS  Google Scholar 

  5. Arman SY, Reza N, Bijan PM (2014) Effect of DC trend removal and window functioning methods on correlation between electrochemical noise parameters and EIS data of stainless steel in an inhibited acidic solution. RSC Adv 4(73):39045–39057. https://doi.org/10.1039/C4RA04026K

    Article  CAS  Google Scholar 

  6. Xia DH, Yashar B (2015) Electrochemical noise: a review of experimental setup, instrumentation and DC removal. Russ J Electrochem 51(7):593–601. https://doi.org/10.1134/S1023193515070071

    Article  CAS  Google Scholar 

  7. Lentka L, Smulko J (2016) Analysis of effectiveness and computational complexity of trend removal methods. Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej 51:111–114

    Google Scholar 

  8. Astaf’ev MG, Kanevskii LS, Grafov M (2007) Analyzing electrochemical noise with Chebyshev’s discrete polynomials. Russ J Electrochem 43(1):17–24. https://doi.org/10.1134/S102319350701003X

    Article  Google Scholar 

  9. Grafov BM, Dobrovol’skii YA, Davydov AD, Ukshe AE, Klyuev AL, Astaf’ev EA (2015) Electrochemical noise diagnostics: analysis of algorithm of orthogonal expansions. Russ J Electrochem 51(6):503–507. https://doi.org/10.1134/S1023193515060063

    Article  CAS  Google Scholar 

  10. Klyuev AL, Grafov BM, Dobrovol’skii YA, Davydov AD, Ukshe AE (2015) Variability of discrete Chebyshev spectra of electrochemical noise. Russ J Electrochem 51(12):1180–1185. https://doi.org/10.1134/S1023193515120071

    Article  CAS  Google Scholar 

  11. Klyuev AL, Davydov AD, Grafov BM, Dobrovolskii YA, Ukshe AE, Astaf’ev EA (2016) Electrochemical noise spectroscopy: method of secondary Chebyshev spectrum. Russ J Electrochem 52(10):1001–1005. https://doi.org/10.1134/S1023193516100062

    Article  CAS  Google Scholar 

  12. Grafov BM, Dobrovolskii YA, Klyuev AL, Ukshe AE, Davydov AD, Astaf’ev EA (2016) Median Chebyshev spectroscopy of electrochemical noise. J Solid State Electrochem 21:915–918

    Article  Google Scholar 

  13. Rice SO (1944) Mathematical analysis of random noise. Bell Syst Tech J 23(3):282–332. https://doi.org/10.1002/j.1538-7305.1944.tb00874.x

    Article  Google Scholar 

  14. Vaseghi SV (1996) Advanced signal processing and digital noise reduction. Wiley, Chichester. https://doi.org/10.1007/978-3-322-92773-6

    Book  Google Scholar 

  15. Stica P, Moses R (2005) Spectral analysis of signals. Prentice Hall, Upper Saddle River

    Google Scholar 

  16. Hiraiwa A, Nishida A (2009) Discrete power spectrum of line width roughness. J Appl Phys 106(7):074905. https://doi.org/10.1063/1.3226883

    Article  Google Scholar 

  17. Wiener N (1930) Generalized harmonic analysis. Acta Math 55(0):117–258. https://doi.org/10.1007/BF02546511

    Article  Google Scholar 

  18. Khinchene A (1934) Korrelationstheorie der stationaren stochastischen Prozesse. Math Ann 109(1):604–615. https://doi.org/10.1007/BF01449156

    Article  Google Scholar 

  19. Gogin N, Hirvensalo M (2007) On the generating function of discrete Chebyshev polynomials. Technical Report No.819. Turku Centre for Computer Science, Turku

  20. Nikiforov AF, Suslov SK, Uvarov VB (1991) Classical orthogonal polynomials of a discrete variable. Springer, Berlin. https://doi.org/10.1007/978-3-642-74748-9

    Book  Google Scholar 

  21. Naidu PS (1995) Modern spectrum analysis of time series. CRC Press, Boca Raton

    Google Scholar 

  22. Gardiner C (1985) Stochastic methods. Springer-Verlag, Berlin

    Google Scholar 

  23. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32(1):110–113. https://doi.org/10.1103/PhysRev.32.110

    Article  CAS  Google Scholar 

  24. Callen HB, Welton TA (1951) Irreversibility and generalized noise. Phys Rev 83(1):34–40. https://doi.org/10.1103/PhysRev.83.34

    Article  Google Scholar 

  25. Watts DR, Kontoyiannis H (1990) Deep-ocean bottom pressure measurement: drift removal and performance. J Atmos Ocean Technol 7(2):296–306. https://doi.org/10.1175/1520-0426(1990)007<0296:DOBPMD>2.0.CO;2

    Article  Google Scholar 

  26. Infield DG, Hill DC (1998) Optimal smoothing for trend removal in short term electricity demand forecasting. IEEE Trans Power Syst 13(3):1115–1120. https://doi.org/10.1109/59.709108

    Article  Google Scholar 

  27. Tanabe J, Miller D, Tregellas J, Freedman R, Meyer FG (2002) Comparison of detrending methods for optimal fMRI preprocessing. NeuroImage 15(4):902–907. https://doi.org/10.1006/nimg.2002.1053

    Article  Google Scholar 

  28. Fedi M, Florio G (2003) Decorrugation and removal of directional trends of magnetic fields by the wavelet transform: application to archaeological areas. Geophys Prospect 51(4):261–272. https://doi.org/10.1046/j.1365-2478.2003.00373.x

    Article  Google Scholar 

  29. Wu Z, Huang NE, Long SR, Peng CK (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci 104(38):14889–14894. https://doi.org/10.1073/pnas.0701020104

    Article  CAS  Google Scholar 

  30. Vamos C (2007) Automatic algorithm for monotone trend removal. Phys Rev E 75(3):036705. https://doi.org/10.1103/PhysRevE.75.036705

    Article  Google Scholar 

  31. Bashan A, Bartsch R, Kantelhardt JW, Havlin S (2008) Comparison of detrending methods for fluctuation analysis. Physica A: Stat Mech Appl 387(21):5080–5090. https://doi.org/10.1016/j.physa.2008.04.023

    Article  Google Scholar 

  32. Nawsupe G, Joshi RR (2011) Modified wavelet-based technique for baseline drift removal and diagnostic scope of spectral energy of radial pulse signal. Int J Biomed Eng Technol 6(1):1–13. https://doi.org/10.1504/IJBET.2011.040450

    Article  Google Scholar 

  33. Zhou Z, Gao F, Zhao H, Zhang L (2011) Techniques to improve the accuracy of noise power spectrum measurements in digital X-ray imaging based on background trends removal. Med Phys 38(3):1600–1610. https://doi.org/10.1118/1.3556566

    Article  Google Scholar 

  34. White NJ, Haigh ID, Church JA, Koen T, Watson CS, Pritchard TR, Zhang X (2014) Australian sea levels—trends, regional variability and influencing factors. Earth Sci Rev 136:155–174. https://doi.org/10.1016/j.earscirev.2014.05.011

    Article  Google Scholar 

  35. Kiyono K (2015) Establishing a direct connection between detrended fluctuation analysis and Fourier analysis. Phys Rev E 92(4):042925. https://doi.org/10.1103/PhysRevE.92.042925

    Article  Google Scholar 

  36. Holl M, Kantz H (2015) The relationship between the detrended fluctuation analysis and the autocorrelation function of a signal. Eur Phys J B 88(12):327. https://doi.org/10.1140/epjb/e2015-60721-1

    Article  Google Scholar 

  37. Shao YH, GF G, Jiang ZQ, Zhou WX (2015) Effects of polynomial trends on detrending moving average analysis. Fractals 23(03):1550034. https://doi.org/10.1142/S0218348X15500346

    Article  Google Scholar 

  38. Agarwal P, Moghissi OC, Orazem ME, Carcia-Rubio LH (1993) Application of measurement models for analysis of impedance spectra. Corrosion 49(4):278–289. https://doi.org/10.5006/1.3316050

    Article  CAS  Google Scholar 

  39. Shukla PK, Orazem ME, Crisalle OD (2004) Validation of the measurement model concept for error structure identification. Electrochim Acta 49(17-18):2881–2889. https://doi.org/10.1016/j.electacta.2004.01.047

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Grafov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grafov, B.M., Klyuev, A.L. & Davydov, A.D. Discrete version of Wiener-Khinchin theorem for Chebyshev’s spectrum of electrochemical noise. J Solid State Electrochem 22, 1661–1667 (2018). https://doi.org/10.1007/s10008-017-3873-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3873-z

Keywords

Navigation