Skip to main content
Log in

Sensitive detection of sulfanilamide by redox process electroanalysis of oxidation products formed in situ on glassy carbon electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reported a simple method for sulfanilamide determination by redox process electroanalysis of oxidation products (SFDox) formed in situ on glassy carbon electrode. The CV experiments showed a reversible process after applied E acc = + 1.06 V and t acc = 1 s, in 0.1 mol L−1 BRBS (pH = 2.0) at 50 mV s−1. Different voltammetric scan rates (from 10 to 450 mV s−1) suggested that the redox peaks of SFDox on the glassy carbon electrode (GCE) is an adsorption-controlled process. Square-wave voltammetry (SWV) method optimized conditions showed a linear response to SFD from 3.00 to 250.0 μmol L−1 (R = 0.998) with a limit of detection of 0.638 μmol L−1 and limit of quantification of 2.0 μmol L−1. The developed the SWV method was successfully used in the determination of SFD pharmaceutical formulation and human serum. The SFD quantification results in pharmaceutical obtained by SWV-GCE were comparable to those found by official analytical protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dmitrienko SG, Kochuk EV, Apyari VV, Tolmacheva VV, Zolotov YA (2014) Anal Chim Acta 850:6–25

    Article  CAS  Google Scholar 

  2. Zhou Q, Fang Z (2015) Talanta 141:170–174

    Article  CAS  Google Scholar 

  3. Munir M, Wong K, Xagoraraki I (2011) Water Res 45:681–693

    Article  CAS  Google Scholar 

  4. Jia X, Zhao P, Ye X, Zhang L, Wang T, Chen Q, Hou X (2017) Talanta 169:227–238

    Article  CAS  Google Scholar 

  5. Chullasat K, Nurerk P, Kanatharana P, Kueseng P, Sukchuay T, Bunkoed O (2017) Anal Chim Acta 961:59–66

    Article  CAS  Google Scholar 

  6. Agbaba D, Radovic A, Vladimirov S, Zivanov-Stakic D (1996) J Chromatogr Sci 34:460–464

    Article  Google Scholar 

  7. Maudens KE, Zhang G, Lambert WE (2004) J Chromatogr A 1047:85–92

    Article  CAS  Google Scholar 

  8. García MM, Diez NM, Gil DB, López FS (2005) J Pharm Biomed Anal 38:349–354

    Article  Google Scholar 

  9. Ferraz BRL, Leite FRF, Malagutti AR (2016) Talanta 154:197–207

    Article  CAS  Google Scholar 

  10. Tadi KK, Motghare RV, Ganesh V (2014) Electroanalysis 26:2328–2336

    Article  CAS  Google Scholar 

  11. Wei X, Xu X, Qi W, Wu Y, Wang L (2017) Prog Nat Sci Mat Inter 27:374–379

    Article  CAS  Google Scholar 

  12. Zhang H, Li S, Zhang F, Wang M, Lin X, Li H (2017) J Solid State Electrochem 21:735–745

    Article  CAS  Google Scholar 

  13. Hu X, Zheng W, Zhang R (2016) J Solid State Electrochem 20:3323–3330

    Article  CAS  Google Scholar 

  14. Yu J, Jin H, Gui R, Lv W, Wang Z (2017) J Electroanal Chem 795:97–102

    Article  CAS  Google Scholar 

  15. Farghaly OA, Hameed RA, Abu-Nawwas AAH (2014) Int J Electrochem Sci 9:3287–3318

    Google Scholar 

  16. Sarigül T, Inan R, Aboul-Enein HY (2010) Talanta 82:1814–1819

    Article  Google Scholar 

  17. Lúcio MMLM, Severo FJR, Costa DJE, Lourenço AS, Ribeiro WF, Bichinho KM, Araujo MCU (2015) Anal Method 7:3268–3276

    Article  Google Scholar 

  18. Ghoneim MM, Radi A, Beltagi AM (2001) J Pharm Biomed Anal 25:205–210

    Article  CAS  Google Scholar 

  19. Wang J, Cai X, Fernandes JR, Ozsoz M, Grant DH (1997) Talanta 45:273–278

    Article  CAS  Google Scholar 

  20. Oliveira-Brett AM, Piedade JAP, Chiorcea AM (2002) J Electroanal Chem 538:267–276

    Article  Google Scholar 

  21. Özcan A, Şahin Y (2011) Anal Chim Acta 685:9–14

    Article  Google Scholar 

  22. Özcan A, Şahin Y (2012) Biosens Bioelectron 31:26–31

    Article  Google Scholar 

  23. Fabiańska A, Białk-Bielińska A, Stepnowski P, Stolte S, Siedlecka EM (2014) J Hazard Mater 280:579–589

    Article  Google Scholar 

  24. Laviron E (1974) J Electroanal Chem 52:355

  25. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons, New York

  26. Msagati TA, Ngila JC (2002) Talanta 58:605–610

  27. Yao C, Sun H, Fu HF, Tan ZC (2015) Electrochim Acta 156:163–170

    Article  CAS  Google Scholar 

  28. Kotkar RM, Srivastava AK (2006) Sensors Actuators B Chem 119:524–530

    Article  CAS  Google Scholar 

  29. Gosser DK (1994) Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH Publishers, New York

    Google Scholar 

  30. Triola MF (2013) Introdução à Estatística, eleventh edn. LTC, Rio de Janeiro

    Google Scholar 

  31. European pharmacopoeia commission (2017) European pharmacopoeia European directorate of quality of medicines & healthcare. Strasbourg, France

Download references

Acknowledgements

The authors thank UFES, CNPq, CAPES, and FAPES for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno R. L. Ferraz.

Electronic supplementary material

ESM 1

(DOCX 613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraz, B.R.L., Profeti, D. & Profeti, L.P.R. Sensitive detection of sulfanilamide by redox process electroanalysis of oxidation products formed in situ on glassy carbon electrode. J Solid State Electrochem 22, 339–346 (2018). https://doi.org/10.1007/s10008-017-3764-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3764-3

Keywords

Navigation