Skip to main content
Log in

Synthesis of well-dispersed Pt-Pd nanoparticles stabilized by silsesquioxanes with enhanced catalytic activity for formic acid electrooxidation

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The preparation of well-dispersed nanoparticles (NPs) has been one of the challenges in the development of nanoscale processing. Here, we firstly prepared well-dispersed Pt-Pd NPs (average particle diameter 6.5 nm) by using octa-maleamic acid silsesquioxanes as the stabilizing agent with hydrothermal method and determined the best OM-POSS/metal precursors molar ratio (1:2). These well-dispersed Pt-Pd NPs exhibited enhanced electrocatalytic performance, stability and tolerance to CO poisoning in formic acid oxidation. Their current density of the first oxidation peak in the CV curve recorded in 0.5 M H2SO4 + 0.5 M HCOOH is 4.3 and 8.6 times higher than those of Pt NPs (0.24 A mg−1) and commercial Pt/C (0.08 A mg−1) catalysts, as well as the ratio of the two oxidation peaks 4.8 and 10 times higher, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Xu JB, Zhao TS, Liang ZX (2008) Carbon supported platinum–gold alloy catalyst for direct formic acid fuel cells. J Power Sources 185:857–861

    Article  CAS  Google Scholar 

  2. Xu X, Zhang X, Sun H, Yang Y, Dai X, Gao J, Li X, Zhang P, Wang H, Yu N, Sun S (2014) Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew Chem Int Ed 53:12522–12527

    CAS  Google Scholar 

  3. Yu XW, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132

    Article  CAS  Google Scholar 

  4. Jung WS, Han JH, Ha S (2007) Analysis of palladium-based anode electrode using electrochemical impedance spectra in direct formic acid fuel cells. J Power Sources 173:53–59

    Article  CAS  Google Scholar 

  5. Ha S, Larsen R, Masel RI (2005) Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells. J Power Sources 144:28–34

    Article  CAS  Google Scholar 

  6. Jeong KJ, Miesse CA, Choi JH, Lee J, Han J, Yoon SP, Nam SW, Lim TH, Lee TG (2007) Fuel crossover in direct formic acid fuel cells. J Power Sources 168:119–125

    Article  CAS  Google Scholar 

  7. Kadirgan F, Beyhan S, Atilan T (2009) Preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation. Int J Hydrog Energy 34:4312–4320

    Article  CAS  Google Scholar 

  8. Zhang S, Shao YY, Yin GP, Lin YH (2010) Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. J Power Sources 195:1103–1106

    Article  CAS  Google Scholar 

  9. Xu C, Hou J, Pang X, Li X, Zhu M, Tang B (2012) Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation. Int J Hydrog Energy 37:10489–10498

    Article  CAS  Google Scholar 

  10. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819

    Article  CAS  Google Scholar 

  11. Vinayan BP, Nagar R, Ramaprabhu S (2012) Synthesis and investigation of mechanism of platinum–graphene electrocatalysts by novel co-reduction techniques for proton exchange membrane fuel cell applications. J Mater Chem 22:25325–25334

    Article  CAS  Google Scholar 

  12. Aravind SSJ, Ramaprabhu S (2012) Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell. ACS Appl Mater Interfaces 4:3805–3810

    Article  CAS  Google Scholar 

  13. Wang SY, Wang X, Jiang SP (2011) Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells. Phys Chem Chem Phys 13:6883–6891

    Article  CAS  Google Scholar 

  14. Mayavan S, Jang H, Lee M, Choi SH, Choi S (2013) Enhancing the catalytic activity of Pt nanoparticles using poly sodium styrene sulfonate stabilized graphene supports for methanol oxidation. J Mater Chem A 1:3489

    Article  CAS  Google Scholar 

  15. Zhang MM, Xie JM, Sun Q, Yan ZX, Chen M, Jing JJ (2013) Enhanced electrocatalytic activity of high Pt-loadings on surface functionalized graphene nanosheets for methanol oxidation. Int J Hydrog Energy 38:16402–16409

    Article  CAS  Google Scholar 

  16. Yao Z, Yue R, Jiang F, Zhai C, Ren F, Du Y (2013) Electrochemical-reduced graphene oxide-modified carbon fiber as Pt–Au nanoparticle support and its high efficient electrocatalytic activity for formic acid oxidation. J Solid State Electrochem 17:2511–2519

    Article  CAS  Google Scholar 

  17. He W, Liu J, Qiao Y, Zou Z, Zhang X, Akins DL, Yang H (2010) Simple preparation of Pd–Pt nanoalloy catalysts for methanol-tolerant oxygen reduction. J Power Sources 195:1046–1050

    Article  CAS  Google Scholar 

  18. Zhang HX, Wang C, Wang JY, Zhai JJ, Cai WB (2010) Carbon-supported Pd − Pt nanoalloy with low Pt content and superior catalysis for formic acid electro-oxidation. J Phys Chem C 114:6446–6451

    Article  CAS  Google Scholar 

  19. Hu Y, Wu P, Zhang H, Cai C (2012) Synthesis of graphene-supported hollow Pt–Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim Acta 85:314–321

    Article  CAS  Google Scholar 

  20. Zhang L, Wan L, Ma Y, Chen Y, Zhou Y, Tang Y, Lu T (2013) Crystalline palladium–cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl Catal B-Environ 138-139:229–235

    Article  CAS  Google Scholar 

  21. Zhao H, Yang J, Li L, Li H, Wang J, Zhang Y (2009) Effect of over-oxidation treatment of Pt–Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. Int J Hydrog Energy 34:3908–3914

    Article  CAS  Google Scholar 

  22. Li X, Hsing I (2006) Surfactant-stabilized PtRu colloidal catalysts with good control of composition and size for methanol oxidation. Electrochim Acta 52:1358–1365

    Article  CAS  Google Scholar 

  23. Xu C, Wang L, Mu X, Ding Y (2010) Nanoporous PtRu alloys for electrocatalysis. Langmuir 26:7437–7443

    Article  CAS  Google Scholar 

  24. Yu X, Pickup PG (2011) Carbon supported PtBi catalysts for direct formic acid fuel cells. Electrochim Acta 56:4037–4043

    Article  CAS  Google Scholar 

  25. Zhang Z, Hui J, Guo Z, Yu Q, Xu B, Zhang X, Liu Z, Xu C, Gao J, Wang X (2012) Solvothermal synthesis of Pt–Pd alloys with selective shapes and their enhanced electrocatalytic activities. Nanoscale 4:2633–2639

    Article  CAS  Google Scholar 

  26. Yu X, Pickup PG (2009) Mechanistic study of the deactivation of carbon supported Pd during formic acid oxidation. Electrochem Commun 11:2012–2014

    Article  CAS  Google Scholar 

  27. Hoshi N, Kuroda M, Ogawa T, Koga O, Hori Y (2004) Infrared reflection absorption spectroscopy of the sulfuric acid anion adsorbed on Pd (S) − [n (111) × (111)] electrodes. Langmuir 20:5066–5070

    Article  CAS  Google Scholar 

  28. Zhang Y, Chang G, Shu H, Oyama M, Liu X, He Y (2014) Synthesis of Pt–Pd bimetallic nanoparticles anchored on graphene for highly active methanol electro-oxidation. J Power Sources 262:279–285

    Article  CAS  Google Scholar 

  29. Kim SM, Lee YJ, Kim JW, Lee SY (2014) Facile synthesis of Pt-Pd bimetallic nanoparticles by plasma discharge in liquid and their electrocatalytic activity toward methanol oxidation in alkaline media. Thin Solid Films 572:260–265

    Article  CAS  Google Scholar 

  30. Liu Y, Chi M, Mazumder V, More KL, Soled S, Henao JD, Sun S (2011) Composition-controlled synthesis of bimetallic PdPt nanoparticles and their electro-oxidation of methanol. Chem Mater 23:4199–4203

    Article  CAS  Google Scholar 

  31. Li Y, Hao F, Wang Y, Zhang Y, Ge C, Lu T (2014) Facile synthesis of octahedral Pt-Pd nanoparticles stabilized by silsesquioxane for the electrooxidation of formic acid. Electrochim Acta 133:302–307

    Article  CAS  Google Scholar 

  32. Zhan FW, Bian T, Zhao WG, Zhang H, Jin MS, Yang DR (2014) Facile synthesis of Pd-Pt alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation. CrystEngComm 16:2411–2416

    Article  CAS  Google Scholar 

  33. Yang J, Tian C, Wang L, Fu H (2011) An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J Mater Chem 21:3384–3390

    Article  CAS  Google Scholar 

  34. Ullah MH, Chung W, Kim I, Ha C (2006) pH-selective synthesis of monodisperse nanoparticles and 3D dendritic nanoclusters of CTAB-stabilized platinum for electrocatalytic O2 reduction. Small 2:870–873

    Article  CAS  Google Scholar 

  35. Chang G, Shu H, Huang Q, Oyama M, Ji K, Liu X, He Y (2015) Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing. Electrochim Acta 157:149–157

    Article  CAS  Google Scholar 

  36. Chen H, Wang Y, Dong S (2007) An effective hydrothermal route for the synthesis of multiple PDDA-protected noble-metal nanostructures. Inorg Chem 46:10587–10593

    Article  CAS  Google Scholar 

  37. Zhang G, Huang C, Qin R, Shao Z, An D, Zhang W, Wang Y (2015) Uniform Pd–Pt alloy nanoparticles supported on graphite nanoplatelets with high electrocatalytic activity towards methanol oxidation. J Mater Chem A 3:5204–5211

    Article  CAS  Google Scholar 

  38. Lim B, Lu X, Jiang M, Camargo PHC, Cho EC, Lee EP, Xia Y (2008) Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett 8:4043–4047

    Article  CAS  Google Scholar 

  39. Zhao X, Zhang WJ, Wu YZ, Liu HZ, Hao XP (2014) Facile fabrication of OA-POSS modified near-infrared-emitting CdSeTe alloyed quantum dots and their bioapplications. New J Chem 38:3242–3249

    Article  CAS  Google Scholar 

  40. Zhang KQ, Li B, Zhao YH, Li H, Yuan XY (2014) Functional POSS-containing polymers and their applications. Prog Chem 26:394–402

    CAS  Google Scholar 

  41. Zhou WQ, Wang J, Wang CY, Du YK, Xu JK, Yang P (2010) A novel reusable platinum nanocatalyst. Mater Chem Phys 122:10–14

    Article  CAS  Google Scholar 

  42. Letant SE, Maiti A, Jones TV, Herberg JL, Maxwell RS, Saab AP (2009) Polyhedral oligomeric silsesquioxane (POSS)-stabilized Pd nanoparticles: factors governing crystallite morphology and secondary aggregate structure. J Phys Chem C 113:19424–19431

    Article  CAS  Google Scholar 

  43. Lu CH, Kuo SW, Huang CF, Chang FC (2009) Self-assembled fernlike microstructures of polyhedral oligomeric silsesquioxane/gold nanoparticle hybrids. J Phys Chem C 113:3517–3524

    Article  CAS  Google Scholar 

  44. Letant SE, Herberg J, Dinh LN, Maxwell RS, Simpson RL, Saab AP (2007) Structure and catalytic activity of POSS-stabilized Pd nanoparticles. Catal Commun 8:2137–2142

    Article  CAS  Google Scholar 

  45. Selvaraj V, Grace AN, Jothibasu S, Nagendiran S, Alagar M (2009) Synthesis and characterization of Au/POSS composite powder for bio-fuel cells and antibiotic applications. J Nanosci Nanotechnol 9:5997–6002

    Article  CAS  Google Scholar 

  46. Rao L, Jiang Y, Zhang B, Cai Y, Sun S (2014) High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation. Phys Chem Chem Phys 16:13617–13662

    Google Scholar 

  47. Chen DH, Zhao YC, Fan YF, Peng XL, Wang X, Tian JN (2013) Synthesis of Ni@PbPt supported on graphene by galvanic displacement reaction for improving ethanol electro-oxidation. J Mater Chem A 1:13227–13232

    Article  CAS  Google Scholar 

  48. Lo SHY, Wang Y, Wan C (2007) Synthesis of PVP stabilized Cu/Pd nanoparticles with citrate complexing agent and its application as an activator for electroless copper deposition. J Colloid Interface Sci 310:190–195

    Article  CAS  Google Scholar 

  49. Guo JW, Zhao TS, Prabhuram J, Wong CW (2005) Preparation and the physical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells. Electrochim Acta 50:1973–1983

    Article  CAS  Google Scholar 

  50. Shen Y, Zhang Z, Long R, Xiao K, Xi J (2014) Synthesis of ultrafine Pt nanoparticles stabilized by pristine graphene nanosheets for electro-oxidation of methanol. ACS Appl Mater Interfaces 6:15162–15170

    CAS  Google Scholar 

  51. Fu G, Wu K, Lin J, Tang Y, Chen Y, Zhou Y, Lu T (2013) One-pot water-based synthesis of Pt–Pd alloy Nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J Phys Chem C 117:9826–9834

    Article  CAS  Google Scholar 

  52. Lu Y, Jiang Y, Wu H, Chen W (2013) Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping–cleaning. J Phys Chem C 117:2926–2938

    Article  CAS  Google Scholar 

  53. Liu Z, Hong L, Tham MP, Lim TH, Jiang H (2006) Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J Power Sources 161:831–835

    Article  CAS  Google Scholar 

  54. Wang RF, Wang H, Wei BX, Wang W, Lei ZQ (2010) Carbon supported Pt-shell modified PdCo-core with electrocatalyst for methanol oxidation. Int J Hydrog Energy 35:10081–10086

    Article  CAS  Google Scholar 

  55. Yue R, Wang C, Jiang F, Wang H, Du Y, Xu J, Yang P (2013) Electrocatalytic oxidation of formic acid on Pt–Pd decorated polyfluorenes with hydroxyl and carboxyl substitution. Int J Hydrog Energy 38:12755–12766

    Article  CAS  Google Scholar 

  56. Guo S, Dong S, Wang E (2010) Three-dimensional Pt-on-Pd bimetallic Nanodendrites supported on graphene Nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4:547–555

    Article  CAS  Google Scholar 

  57. Xu JL, Zhang C, Wang XG, Ji H, Zhao CC, Wang Y, Zhang ZH (2011) Fabrication of bi-modal nanoporous bimetallic Pt-Au alloy with excellent electrocatalytic performance towards formic acid oxidation. Green Chem 13:1914–1922

    Article  CAS  Google Scholar 

  58. Yang X, Yang QD, Xu J, Lee CS (2012) Bimetallic PtPd nanoparticles on nafion-graphene film as catalyst for ethanol electro-oxidation. J Mater Chem 22:8057–8062

    Article  CAS  Google Scholar 

  59. Larsen R, Masel RI (2004) Kinetic study of CO tolerance during electro-oxidation of formic acid on spontaneously deposited Pt/Pd and Pt/Ru nanoparticles. Electrochem Solid-State Lett 7:A148–A150

    Article  CAS  Google Scholar 

  60. Rice C, Ha S, Masel RI, Wieckowski A (2003) Catalysts for direct formic acid fuel cells. J Power Sources 115:229–235

    Article  CAS  Google Scholar 

  61. Babu PK, Kim HS, Chung JH, Oldfield E, Wieckowski A (2004) Bonding and motional aspects of CO adsorbed on the surface of Pt nanoparticles decorated with Pd. J Phys Chem B 108:20228–20232

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was financially supported by the National Nature Science Foundations of China (No. 81571812; No. 61171015) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (1107047002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, K., Hao, F., Wei, S. et al. Synthesis of well-dispersed Pt-Pd nanoparticles stabilized by silsesquioxanes with enhanced catalytic activity for formic acid electrooxidation. J Solid State Electrochem 21, 297–304 (2017). https://doi.org/10.1007/s10008-016-3334-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3334-0

Keywords

Navigation