Skip to main content
Log in

Electrochemical-reduced graphene oxide-modified carbon fiber as Pt–Au nanoparticle support and its high efficient electrocatalytic activity for formic acid oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simple electrochemical approach is developed to prepare reduced graphene oxide (RGO)-wrapped carbon fiber (CF) as a novel support for Pt–Au nanocatalysts. The obtained composite electrodes have been characterized by scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDX), thermal gravimetric analysis (TGA), and electrochemical methods. SEM images reveal that the Pt–Au nanoparticles deposited on RGO-wrapped CF (RGO/CF) electrode display smaller particle size and more uniform dispersion than those on the bare CF electrode. Cyclic voltammetry, linear sweep voltammetry, chronoamperometry, chronopotentiometry, Tafel plots, and electrochemical impedance spectroscopy (EIS) analyses demonstrate that the introduced RGO on CF electrode surface is beneficial to the dispersion of Pt–Au nanoparticles, as a consequence, to the enhancement of the electrocatalytic activity and the antipoisoning ability of Pt–Au towards formic acid electrooxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cheng A, Holt-Hindle P (2010) Chemical Rev 110:3767–3804

    Article  Google Scholar 

  2. Bianchini C, Shen PK (2009) Chemical Rev 109:4183–4206

    Article  CAS  Google Scholar 

  3. Wang J-Y, Kang Y-Y, Yang H, Cai W-B (2009) J Phys Chem C 113:8366–8372

    Article  CAS  Google Scholar 

  4. Samjeské G, Miki A, Ye S, Osawa M (2006) J Phys Chem B 110:16559–16566

    Article  Google Scholar 

  5. Chen W, Kim J, Sun S, Chen S (2006) Phys Chem Chem Phys 8:2779–2789

    Article  CAS  Google Scholar 

  6. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) J Power Sources 111:83–89

    Article  CAS  Google Scholar 

  7. Guo P, Wei Z, Ye W, Qin W, Wang Q, Guo X, Lu C, Zhao XS (2012) Colloids Surf A Physicochem Eng Asp 395:75–81

    Article  CAS  Google Scholar 

  8. Lu G-Q, Crown A, Wieckowski A (1999) J Phys Chem B 103:9700–9711

    Article  CAS  Google Scholar 

  9. Zhou W, Du Y, Zhang H, Xu J, Yang P (2010) Electrochim Acta 55:2911–2917

    Article  CAS  Google Scholar 

  10. Zhou W, Wang C, Xu J, Du Y, Yang P (2011) J Power Sources 196:1118–1122

    Article  CAS  Google Scholar 

  11. Zhang S, Shao Y, Liao H-G, Liu J, Aksay IA, Yin G, Lin Y (2011) Chem Mater 23:1079–1081

    Article  CAS  Google Scholar 

  12. Wang S, Wang X, Jiang SP (2011) Phys Chem Chem Phys 13:6883–6891

    Article  CAS  Google Scholar 

  13. Zhang Z, Wang Y, Wang X (2011) Nanoscale 3:1663–1674

    Article  CAS  Google Scholar 

  14. Kristian N, Yan Y, Wang X (2008) Chem Commun 5:353–355

    Article  Google Scholar 

  15. Zhou R, Zhang H, Du Y, Yang P (2011) Acta Chimica Sinica 69:1533–1539

    CAS  Google Scholar 

  16. Wu B, Hu D, Kuang Y, Yu Y, Zhang X, Chen J (2011) Chemical Commun 47:5253–5255

    Article  CAS  Google Scholar 

  17. Antolini E (2010) Appl Catal, B 100:413–426

    Article  CAS  Google Scholar 

  18. Pang S, Hernandez Y, Feng X, Müllen K (2011) Adv Mater 23:2779–2795

    Article  CAS  Google Scholar 

  19. Pumera M (2010) Chem Soc Rev 39:4146–4157

    Article  CAS  Google Scholar 

  20. Eda G, Chhowalla M (2011) ACS Nano 5:4265–4268

    Article  CAS  Google Scholar 

  21. Shao Y, Wang J, Engelhard M, Wang C, Lin Y (2010) J Mater Chem 20:743–748

    Article  CAS  Google Scholar 

  22. Park S, Shao Y, Wan H, Rieke PC, Viswanathan VV, Towne SA, Saraf LV, Liu J, Lin Y, Wang Y (2011) Electrochem Commun 13:258–261

    Article  CAS  Google Scholar 

  23. Yang S, Shen C, Liang Y, Tong H, He W, Shi X, Zhang X, Gao H-j (2011) Nanoscale 3:3277–3284

    Article  CAS  Google Scholar 

  24. Yang J, Tian C, Wang L, Fu H (2011) J Mater Chem 21:3384–3390

    Article  CAS  Google Scholar 

  25. Meng H, Xie F, Chen J, Shen PK (2011) J Mater Chem 21:11352–11358

    Article  CAS  Google Scholar 

  26. Hu Y, Zhang H, Wu P, Zhang H, Zhou B, Cai C (2011) Phys Chem Chem Phy 13:4083–4094

    Article  CAS  Google Scholar 

  27. Hummers W, Offeman R (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  28. Yao Z, Zhu M, Jiang F, Du Y, Wang C, Yang P (2012) J Mater Chem 22:13707–13713

    Article  CAS  Google Scholar 

  29. Zhu M, Chen P, Liu M (2011) ACS Nano 5:4529–4536

    Article  CAS  Google Scholar 

  30. Zhu M, Chen P, Liu M (2011) J Mater Chem 21:16413–16419

    Article  CAS  Google Scholar 

  31. Zhu M, Chen P, Liu M (2012) Langmuir 28:3385–3390

    Article  CAS  Google Scholar 

  32. Zhu M, Chen P, Liu M (2012) Chin Sci Bull 58:84–91

    Article  Google Scholar 

  33. Li Y, Tang L, Li J (2009) Electrochem Commun 11:846–849

    Article  Google Scholar 

  34. Rao CV, Reddy ALM, Ishikawa Y, Ajayan PM (2011) Carbon 49:931–936

    Article  CAS  Google Scholar 

  35. Venkateswara RC, Cabrera CR, Ishikawa Y (2011) J Phys Chem C 115:21963–21970

    Article  Google Scholar 

  36. Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S (2010) J Power Sources 195:4628–4633

    Article  CAS  Google Scholar 

  37. Liu J, Cao L, Huang W, Li Z (2011) ACS Appl Mater Interfaces 3:3552–3558

    Article  CAS  Google Scholar 

  38. Ren F, Zhou W, Du Y, Yang P, Wang C, Xu J (2011) Int J Hydrogen Energy 36:6414–6421

    Article  CAS  Google Scholar 

  39. Pozio A, Francesco MD, Cemmi A, Cardellini F, Grorgi L (2002) J Power Sources 105:13–19

    Article  CAS  Google Scholar 

  40. Zhou W, Xu J, Du Y, Yang P (2011) Int J Hydrogen Energy 36(3):1903–1912

    Article  CAS  Google Scholar 

  41. Zhang S, Shao Y, Yin G, Lin Y (2010) Angew Chem Int Ed 49:2211–2214

    Article  CAS  Google Scholar 

  42. Sharma S, Ganguly A, Papakonstantinou P, Miao X, Li M, Hutchison JL, Delichatosios M, Ukleja S (2010) J Phys Chem C 114:19459–19466

    Article  CAS  Google Scholar 

  43. Kua J, Goddard WA (1999) J Am Chem Soc 121:10928–10941

    Google Scholar 

  44. Zhang Y, Gu Y-e, Lin S, Wei J, Wang Z, Wang C, Du Y, Ye W (2011) Electrochim Acta 56:8746–8751

    Article  CAS  Google Scholar 

  45. Zhang H, Zhou W, Du Y, Yang P, Wang C (2010) Electrochem Commun 12:882–885

    Article  CAS  Google Scholar 

  46. Zhou W, Zhai C, Du Y, Xu J, Yang P (2009) Int J Hydrogen Energy 34:9316–9323

    Article  CAS  Google Scholar 

  47. Qin Y-H, Yang H-H, Zhang X-S, Li P, Ma C-A (2010) Int J Hydrogen Energy 35:7667–7674

    Article  CAS  Google Scholar 

  48. Ye W, Yan J, Ye Q, Zhou F (2010) J Phys Chem C 114:15617–15624

    Article  CAS  Google Scholar 

  49. Wu G, Li L, Xu B-Q (2004) Electrochim Acta 50:1–10

    Article  CAS  Google Scholar 

  50. Zhou W, Du Y, Ren F, Wang C, Xu J, Yang P (2010) Int J Hydrogen Energy 35:3270–3279

    Article  CAS  Google Scholar 

  51. Yang S, Shen C, Lu X, Tong H, Zhu J, Zhang X, Gao H-j (2012) Electrochim Acta 62:242–249

    Article  CAS  Google Scholar 

  52. Su L-H, Zhang X-G, Liu Y (2007) J Solid State Electrochem 12:1129–1134

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 51073114 and 20933007), the Opening Project of Xinjiang Key Laboratory of Electronic Information Materials and Devices (XJYS0901-2010-01), the Academic Award for Young Graduate Scholar of Soochow University, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukou Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Z., Yue, R., Jiang, F. et al. Electrochemical-reduced graphene oxide-modified carbon fiber as Pt–Au nanoparticle support and its high efficient electrocatalytic activity for formic acid oxidation. J Solid State Electrochem 17, 2511–2519 (2013). https://doi.org/10.1007/s10008-013-2130-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2130-3

Keywords

Navigation