Skip to main content

Advertisement

Log in

Development of electrochemical genosensor for MYCN oncogene detection using rhodamine B as electroactive label

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel electrochemical genosensor based on a graphite electrode modified with poly(4-aminophenol) has been constructed for prognostic of neuroblastoma, a malignant tumor originating from embryonic precursor cells of the sympathetic nervous system and associated with the amplification of the MYCN oncogene. The genosensor exhibited distinct electrical and morphological properties using rhodamine B as indicator of DNA hybridization. The detection limit was evaluated to be 0.47 μmol L−1 (n = 3), and the electrochemical genosensor was selective for the complementary DNA, using serum sample. This DNA sensing platform was successfully applied to detect MYCN, an important biomarker for neuroblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sridhar S, Al-Moallem B, Kamal H, Terrile M, Stallings RL (2013) New insights into the genetics of neuroblastoma. Mol Diagn Ther 17:63–69

    Article  CAS  Google Scholar 

  2. Westermark UK, Wilhelm M, Frenzel A, Henriksson MA (2011) The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol 21:256–266

    Article  CAS  Google Scholar 

  3. Bordow SB, Norris MD, Haber PS, Marshall GM, Haber M (1998) Prognostic significance of MYCN oncogene expression in childhood neuroblastoma. J Clin Oncol 16:3286–3294

    CAS  Google Scholar 

  4. Yanez Y, Grau E, Rodriguez-Cortez VC, Hervas D, Vidal E, Noguera R, Hernandez M, Segura V, Canete A, Conesa A, Font de Mora J, Castel V (2015) Two independent epigenetic biomarkers predict survival in neuroblastoma. Clin Epigenetics 7:16

    Article  Google Scholar 

  5. Heck JE, Ritz B, Hung RJ, Hashibe M, Boffetta P (2009) The epidemiology of neuroblastoma: a review. Paediatr Perinat Epidemiol 23:125–143

    Article  Google Scholar 

  6. Owens C, Irwin M (2012) Neuroblastoma: the impact of biology and cooperation leading to personalized treatments. Crit Rev Clin Lab Sci 49:85–115

    Article  CAS  Google Scholar 

  7. Mosse YP, Deyell RJ, Berthold F, Nagakawara A, Ambros PF, Monclair T, Cohn SL, Pearson AD, London WB, Matthay KK (2014) Neuroblastoma in older children, adolescents and young adults: a report from the International Neuroblastoma Risk Group project. Pediatr Blood Cancer 61:627–635

    Article  Google Scholar 

  8. Schneiderman J, London WB, Brodeur GM, Castleberry RP, Look AT, Cohn SL (2008) Clinical significance of MYCN amplification and ploidy in favorable-stage neuroblastoma: a report from the Children’s Oncology Group. J Clin Oncol 26:913–918

    Article  Google Scholar 

  9. Wahlstrom T, Arsenian Henriksson M (2015) Impact of MYC in regulation of tumor cell metabolism. Biochim Biophys Acta 1849:563–569

    Article  Google Scholar 

  10. Dang CV (2012) MYC on the path to cancer. Cell 149:22–35

    Article  CAS  Google Scholar 

  11. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, Mosseri V, Simon T, Garaventa A, Castel V, Matthay KK, Force IT (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27:289–297

    Article  Google Scholar 

  12. Kojima M, Hiyama E, Fukuba I, Yamaoka E, Ueda Y, Onitake Y, Kurihara S, Sueda T (2013) Detection of MYCN amplification using blood plasma: noninvasive therapy evaluation and prediction of prognosis in neuroblastoma. Pediatr Surg Int 29:1139–1145

    Article  Google Scholar 

  13. Okcu MF, Wang RY, Bueso-Ramos C, Schober W, Weidner D, Andrassy R, Blakely M, Russell H, Ozkan A, Kuttesch J, Andreeff M, Chan KW, Ater J (2005) Flow cytometry and fluorescence in situ hybridization to detect residual neuroblastoma cells in bone marrow. Pediatr Blood Cancer 45:787–795

    Article  Google Scholar 

  14. Diaz-Gonzalez M, Hernandez-Santos D, Gonzalez-Garcia MB, Costa-Garcia A (2005) Development of an immunosensor for the determination of rabbit IgG using streptavidin modified screen-printed carbon electrodes. Talanta 65:565–573

    Article  CAS  Google Scholar 

  15. Labuda J, Brett AMO, Evtugyn G, Fojta M, Mascini M, Ozsoz M, Palchetti I, Paleček E, Wang J (2010) Electrochemical nucleic acid-based biosensors: concepts, terms, and methodology (IUPAC technical report). Pure Appl Chem 82:1161–1187

    Article  CAS  Google Scholar 

  16. Teles F, Fonseca L (2008) Trends in DNA biosensors. Talanta 77:606–623

    Article  CAS  Google Scholar 

  17. Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  CAS  Google Scholar 

  18. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892

    Article  CAS  Google Scholar 

  19. Castro ACH, França EG, de Paula LF, Soares MMCN, Goulart LR, Madurro JM, Brito-Madurro AG (2014) Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus. Appl Surf Sci 314:273–279

    Article  Google Scholar 

  20. Rodrigues LP, Ferreira LF, Monte AF, Brito-Madurro AG, Madurro JM (2014) Bioelectrode applied to diagnosis of cardiac disease. J Nanosci Nanotechnol 14:6528–6538

    Article  CAS  Google Scholar 

  21. Paraíso LF, Paula LF, Franco DL, Madurro JM, Brito-Madurro AG (2014) Bioelectrochemical detection of alanine aminotransferase for molecular diagnostic of the liver disease. Int J Electrochem Sci 9:1286–1297

    Google Scholar 

  22. Rushworth JV, Ahmed A, Griffiths HH, Pollock NM, Hooper NM, Millner PA (2014) A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosens Bioelectron 56:83–90

    Article  CAS  Google Scholar 

  23. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8:1400–1458

    Article  CAS  Google Scholar 

  24. Sanvicens N, Mannelli I, Salvador JP, Valera E, Marco MP (2011) Biosensors for pharmaceuticals based on novel technology. Trends Anal Chem 30:541–553

    Article  CAS  Google Scholar 

  25. Silva FB, Vieira SN, Goulart LR, Filho BJF, Brito-Madurro AG, Madurro JM (2008) Electrochemical investigation of oligonucleotide-DNA hybridization on poly(4-methoxyphenethylamine). Int J Mol Sci 9:1173–1188

    Article  CAS  Google Scholar 

  26. Liu L, Shen B, Shi J, Liu F, Lu GY, Zhu JJ (2010) A novel mediator-free biosensor based on co-intercalation of DNA and hemoglobin in the interlayer galleries of alpha-zirconium phosphate. Biosens Bioelectron 25:2627–2632

    Article  CAS  Google Scholar 

  27. Chen ZW, Balamurugan A, Chen SM (2009) Detection of DNA by using bio-conducting polymer-Nile blue composite electrode; Nile blue as an indicator. Bioelectrochemistry 75:13–18

    Article  CAS  Google Scholar 

  28. Minasyan SH, Tavadyan LA, Antonyan AP, Davtyan HG, Parsadanyan MA, Vardevanyan PO (2006) Differential pulse voltammetric studies of ethidium bromide binding to DNA. Bioelectrochemistry 68:48–55

    Article  CAS  Google Scholar 

  29. Evenson DP, Darzynkiewicz Z, Melamed MR (1982) Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial-membrane potential related to cell motility. J Histochem Cytochem 30:279–280

    Article  CAS  Google Scholar 

  30. Kirsanov KI, Lesovaya EA, Yakubovskaya MG, Belitsky GA (2010) SYBR gold and SYBR green II are not mutagenic in the Ames test. Mutat Res-Genet Toxicol Environ Mutagen 699:1–4

    Article  CAS  Google Scholar 

  31. Cosnier S (2003) Biosensors based on electropolymerized films: new trends. Anal Bioanal Chem 377:507–520

    Article  CAS  Google Scholar 

  32. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511

    Article  CAS  Google Scholar 

  33. Franco DL, Afonso AS, Vieira SN, Ferreira LF, Gonçalves RA, Brito-Madurro AG, Madurro JM (2008) Electropolymerization of 3-aminophenol on carbon graphite surface: electric and morphologic properties. Mater Chem Phys 107:404–409

    Article  CAS  Google Scholar 

  34. Vieira SN, Ferreira LF, Franco DL, Afonso AS, Gonçalves RA, Brito-Madurro AG, Madurro JM (2006) Electrochemical modification of graphite electrodes with poly(4-aminophenol). Macromol Symp 245-246:236–242

    Article  Google Scholar 

  35. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17:345–359

    Article  CAS  Google Scholar 

  36. Iost RM, da Silva WC, Madurro JM, Madurro AG, Ferreira LF, Crespilho FN (2011) Recent advances in nano-based electrochemical biosensors: application in diagnosis and monitoring of diseases. Front Biosci (Elite Ed) 3:663–689

    Google Scholar 

  37. Nasirizadeh N, Zare HR, Pournaghi-Azar MH, Hejazi MS (2011) Introduction of hematoxylin as an electroactive label for DNA biosensors and its employment in detection of target DNA sequence and single-base mismatch in human papilloma virus corresponding to oligonucleotide. Biosens Bioelectron 26:2638–2644

    Article  CAS  Google Scholar 

  38. Afonso AS, Goulart LR, Goulart IMB, Machado AEH, Madurro JM, Brito-Madurro AG (2010) A promising bioelectrode based on gene of mycobacterium leprae immobilized onto poly(4-aminophenol). J Appl Polym Sci 118:2921–2928

    Article  CAS  Google Scholar 

  39. Balvedi RP, Castro AC, Madurro JM, Brito-Madurro AG (2014) Detection of a specific biomarker for Epstein-Barr virus using a polymer-based genosensor. Int J Mol Sci 15:9051–9066

    Article  Google Scholar 

  40. Hashimoto K, Miwa K, Goto M, Ishimori Y (1993) DNA sensor: a novel electrochemical gene detection method using carbon electrode immobilized DNA probes. Supramol Chem 2:265–270

    Article  CAS  Google Scholar 

  41. Ferreira LF, Boodts JFC, Brito-Madurro AG, Madurro JM (2008) Gold electrodes modified with poly (4-aminophenol): incorporation of nitrogenated bases and an oligonucleotide. Polym Int 57:644–650

    Article  CAS  Google Scholar 

  42. Rasmussen SR, Larsen MR, Rasmussen SE (1991) Covalent immobilization of DNA onto polystyrene Microwells—the molecules are only bound at the 5′ end. Anal Biochem 198:138–142

    Article  CAS  Google Scholar 

  43. SantaLucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95:1460–1465

    Article  CAS  Google Scholar 

  44. Liu A, Wang K, Weng S, Lei Y, Lin L, Chen W, Lin X, Chen Y (2012) Development of electrochemical DNA biosensors. Trends Anal Chem 37:101–111

    Article  Google Scholar 

  45. Oliveira-Brett AM, Piedade JA, Silva LA, Diculescu VC (2004) Voltammetric determination of all DNA nucleotides. Anal Biochem 332:321–329

    Article  CAS  Google Scholar 

  46. Oliveira-Brett AM, Piedade JAP, Serrano SHP (2000) Electrochemical oxidation of 8-oxoguanine. Electroanalysis 12:969–973

    Article  Google Scholar 

  47. Sun J, Gan T, Li Y, Shi Z, Liu Y (2014) Rapid and sensitive strategy for rhodamine B detection using a novel electrochemical platform based on core–shell structured Cu@carbon sphere nanohybrid. J Electroanal Chem 724:87–94

    Article  CAS  Google Scholar 

  48. Wang J (2002) Electrochemical nucleic acid biosensors. Anal Chim Acta 469:63–71

    Article  CAS  Google Scholar 

  49. Islam MM, Chakraborty M, Pandya P, Al Masum A, Gupta N, Mukhopadhyay S (2013) Binding of DNA with rhodamine B: spectroscopic and molecular modeling studies. Dyes Pigments 99:412–422

    Article  CAS  Google Scholar 

  50. Saxena U, Chakraborty M, Goswami P (2011) Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples. Biosens Bioelectron 26:3037–3043

    Article  CAS  Google Scholar 

  51. Paczesny S (2013) Discovery and validation of graft-versus-host disease biomarkers. Blood 121:585–594

    Article  CAS  Google Scholar 

  52. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353:38–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Graci Brito Madurro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

e Silva, T.D.S., de Castro, A.C.H., de Rezende Rodovalho, V. et al. Development of electrochemical genosensor for MYCN oncogene detection using rhodamine B as electroactive label. J Solid State Electrochem 20, 2411–2418 (2016). https://doi.org/10.1007/s10008-016-3326-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3326-0

Keywords

Navigation