Skip to main content
Log in

Electrochemical detection of the p53 gene using exponential amplification reaction (EXPAR) and CRISPR/Cas12a reactions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An improved electrochemical sensor has been developed for sensitive detection of the p53 gene based on exponential amplification reaction (EXPAR) and CRISPR/Cas12a. Restriction endonuclease BstNI is introduced to specifically identify and cleave the p53 gene, generating primers to trigger the EXPAR cascade amplification. A large number of amplified products are then obtained to enable the lateral cleavage activity of CRISPR/Cas12a. For electrochemical detection, the amplified product activates Cas12a to digest the designed block probe, which allows the signal probe to be captured by the reduced graphene oxide-modified electrode (GCE/RGO), resulting in an enhanced electrochemical signal. Notably, the signal probe is labeled with large amounts of methylene blue (MB). Compared with traditional endpoint decoration, the special signal probe effectively amplifies the electrochemical signals by a factor of about 15. Experimental results show that the electrochemical sensor exhibits wide ranges from 500 aM to 10 pM and 10 pM to 1 nM, as well as a relatively low limit detection of 0.39 fM, which is about an order of magnitude lower than that of fluorescence detection. Moreover, the proposed sensor shows reliable application capability in real human serum, indicating that this work has great prospects for the construction of a CRISPR-based ultra-sensitive detection platform.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levine AJ, Finlay CA, Hinds PW (2004) P53 is a tumor suppressor gene. Cell 116:S67–S69

    Article  CAS  PubMed  Google Scholar 

  2. Sigal A, Rotter V (2000) Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Can Res 60:6788–6893

    CAS  Google Scholar 

  3. Sammons MA, Nguyen T-AT, McDade SS, Fischer M (2020) Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 48:8848–8869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Esteban-Fernandez de Avila B, Araque E, Campuzano S, Pedrero M, Dalkiran B, Barderas R et al (2015) Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples. Anal Chem 87:2290–2298

    Article  CAS  PubMed  Google Scholar 

  5. Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z (2020) Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol 12:674–687

    Article  PubMed  PubMed Central  Google Scholar 

  6. Syahruddin E, Zaini J, Sembiring R, Baginta R, Fadhillah MR, Noor DR (2022) TP53 and EGFR mutational status in thymoma: a genetic sequencing study. Asian Pac J Cancer Prev: APJCP 23:109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sadia H, Bhinder MA, Irshad A, Zahid B, Ahmed R, Ashiq S et al (2020) Determination of expression profile of p53 gene in different grades of breast cancer tissues by real time PCR. Afr Health Sci 20:1273–1282

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frazzi R, Bizzarri V, Albertazzi L, Cusenza VY, Coppolecchia L, Luminari S et al (2020) Droplet digital PCR is a sensitive tool for the detection of TP53 deletions and point mutations in chronic lymphocytic leukaemia. Br J Haematol 189:E49–E52

    Article  CAS  PubMed  Google Scholar 

  9. Fu R, Wang Y, L Y, Liu H, Zhao Q, Zhang Y, Wang C, Li Z, Jiao B, He Y (2022) CRISPR-Cas12a based fluorescence assay for organophosphorus pesticides in agricultural products. Food Chem 387:132919

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Wang Y, Ma L, Fu R, Liu H, Cui Y, Zhao Q, Zhang Y, Jiao B, He Y (2022) A CRISPR/Cas12a-based photothermal platform for the portable detection of citrus-associated Alternaria genes using a thermometer. Int J Biol Macromol 222:2661–2669

    Article  CAS  PubMed  Google Scholar 

  11. Chertow DS (2018) Next-generation diagnostics with CRISPR. Sci 360:381–382

    Article  Google Scholar 

  12. Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F (2019) SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc 14:2986–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM et al (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Sci 360:436

    Article  CAS  Google Scholar 

  14. Li L, Li S, Wu N, Wu J, Wang G, Zhao G et al (2019) HOLMESv2: AaCRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol 8:2228–2237

    Article  CAS  PubMed  Google Scholar 

  15. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Sci 360:439

    Article  CAS  Google Scholar 

  16. Chen JS (2021) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Sci 371:791

    Google Scholar 

  17. Wu H, Chen Y, Yang Q, Peng C, Wang X, Zhang M et al (2021) A reversible valve-assisted chip coupling with integrated sample treatment and CRISPR/Cas12a for visual detection of Vibrio parahaemolyticus. Biosens Bioelectron 188(15):113352

    Article  CAS  PubMed  Google Scholar 

  18. Yue S, Li Y, Qiao Z, Song W, Bi S (2021) Rolling circle replication for biosensing, bioimaging, and biomedicine. Trends Biotechnol 39:1160–1172

    Article  CAS  PubMed  Google Scholar 

  19. Zhou B, Lin L, Li B (2021) Exponential amplification reaction-based fluorescent sensor for the sensitive detection of tumor biomarker flap endonuclease 1. Sensors Actuators B-Chem 346:130457

    Article  CAS  Google Scholar 

  20. Bi S, Yue S, Zhang S (2017) Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 46:4281–4298

    Article  CAS  PubMed  Google Scholar 

  21. Glökler J, Lim T, Ida J, Frohme M (2021) Isothermal amplifications-a comprehensive review on current methods. Crit Rev Biochem Mol Biol 56(6):543–586

    Article  PubMed  Google Scholar 

  22. Wu H, Wu J, Liu Y, Wang H, Zou P (2019) Fluorometric determination of microRNA using arched probe-mediated isothermal exponential amplification combined with DNA-templated silver nanoclusters. Microchim Acta 186:715

    Article  CAS  Google Scholar 

  23. Carter JG, Iturbe LO, Duprey J-LHA, Carter IR, Southern CD, Rana M et al (2021) Ultrarapid detection of SARS-CoV-2 RNA using a reverse transcription-free exponential amplification reaction, RTF-EXPAR. Proc Natl Acad Sci U S A 118:e2100347118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qing M, Chen S, Sun Z, Fan Y, Luo H, Li N (2021) Universal and programmable rolling circle amplification-CRISPR/Cas12a-mediated immobilization-free electrochemical biosensor. Anal Chem 93:7499–7507

    Article  CAS  PubMed  Google Scholar 

  25. Dai YF, Somoza RA, Wang L, Welter JF, Li Y, Caplan AI, Liu CC (2019) Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew Chem Int Ed 58:17399–17405

    Article  CAS  Google Scholar 

  26. Suea-Ngam A, Howes PD, DeMello AJ (2021) An amplification-free ultra-sensitive electrochemical CRISPR/Cas biosensor for drug-resistant bacteria detection. Chem Sci 12:12733–12743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W (2019) CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv Mater 31:1905311

    Article  CAS  Google Scholar 

  28. Zhao L, Pan H, Zhang X, Zhou Y (2020) Ultrasensitive detection of microRNA based on a homogeneous label-free electrochemical platform using G-triplex/methylene blue as a signal generator. Anal Chim Acta 1116:62–69

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Chen W, Wang Y, Zeng L, Chen T, Chen G, Chen J (2020) Ultrasensitive detection of microRNA based on a homogeneous label-free electrochemical platform using G-triplex/methylene blue as a signal generator. Biosens Bioelectron 169:112555

    Article  CAS  PubMed  Google Scholar 

  30. Qing M, Sun Z, Wang L, Du SZ, Zhou J, Tang Q et al (2021) CRISPR/Cas12a-regulated homogeneous electrochemical aptasensor for amplified detection of protein. Sensors Actuators B-Chem 348:130713

    Article  CAS  Google Scholar 

  31. Zhou S, Sun H, Wang X, Lu P, Huo D, Li J et al (2021) Fe-hemin-metal organic frameworks/three-dimensional graphene composites with efficient peroxidase-like bioactivity for real-time electrochemical detection of extracellular hydrogen peroxide. J Electrochem Soc 168:127501

    Article  CAS  Google Scholar 

  32. Zheng J, Zhao P, Zhou S, Chen S, Liang Y, Tian F, Zhou J et al (2019) Development of Au-Pd@UiO-66-on-ZIF-L/CC as a self-supported electrochemical sensor for in situ monitoring of cellular hydrogen peroxide. J Mater Chem B 31:1905311

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81772290), Chongqing science and technology commission (cstc2021jcyj-msxmX0608), the Graduate Scientific Research and Innovation Foundation of Chongqing, China (CYB22072), the Fundamental Research Funds for the Central Universities (2021CDJYGRH006), the Sichuan Science and Technology Program (2022YFSY0013), the Chongqing Graduate Tutor Team Construction Project, and the Analytical and Testing Center of Chongqing University (SEM/Raman) and the sharing fund of Chongqing University’s large equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danqun Huo or Changjun Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4977 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Deng, L., Dong, J. et al. Electrochemical detection of the p53 gene using exponential amplification reaction (EXPAR) and CRISPR/Cas12a reactions. Microchim Acta 190, 113 (2023). https://doi.org/10.1007/s00604-023-05642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05642-0

Keywords

Navigation