Skip to main content
Log in

Identification of low-index crystal planes of polycrystalline gold on the basis of electrochemical oxide layer formation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of single-crystal gold surfaces has been well studied, and the exposed crystal planes can be reliably distinguished based on the peak potentials of oxide formation. However, the multiple oxidation peaks of polycrystalline gold have not yet been unambiguously related to crystal planes. In this work, we used cyclic voltammetric responses of activated polycrystalline gold electrodes recorded in sulfuric acid solutions to allow constructing relationships between crystal planes and oxide peaks. The studies of oxide formation were complemented by measuring double-layer non-faradaic currents, lead underpotential deposition (Pb-upd), the oxygen reduction reaction (ORR), and the hydrogen evolution reaction (HER).

The link between three gold oxide current peaks and exposed low index crystal planes, viz. Au(100), Au(110) and Au(111) on polycrystalline gold electrode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rodriguez P, Koper MTM (2014) Electrocatalysis on gold. Phys Chem Chem Phys 16(27):13583–13594

    Article  CAS  Google Scholar 

  2. Jeyabharathi C, Hasse U, Ahrens P, Scholz F (2014) Oxygen electroreduction on polycrystalline gold electrodes and on gold nanoparticle-modified glassy carbon electrodes. J Solid State Electrochem 18:3299–3306

    Article  CAS  Google Scholar 

  3. Dickertmann D, Schultze JW, Vetter KJ (1974) Electrochemical formation and reduction of monomolecular oxide layers on (111) and (100) planes of gold single crystals. J Electroanal Chem Interfacial Electrochem 55:429–443

    Article  CAS  Google Scholar 

  4. Angerstein-Kozlowska H, Conway BE, Hamelin A, Stoicoviciu L (1986) Elementary steps of electrochemical oxidation of single-crystal planes of Au—I. Chemical basis of processes involving geometry of anions and the electrode surfaces. Electrochim Acta 31:1051–1061

    Article  CAS  Google Scholar 

  5. Štrbac S, Adžić RR, Hamelin A (1988) Oxide formation on gold single crystal stepped surfaces. J Electroanal Chem Interfacial Electrochem 249:291–310

    Article  Google Scholar 

  6. Hamelin A (1984) Underpotential deposition of lead on single crystal faces of gold: part I. The influence of crystallographic orientation of the substrate. J Electroanal Chem Interfacial Electrochem 165:167–180

    Article  CAS  Google Scholar 

  7. Engelsmann K, Lorenz WJ, Schmidt E (1980) Underpotential deposition of lead on polycrystalline and single-crystal gold surfaces: part I. Thermodynamics J Electroanal Chem 114:1–10

    Article  CAS  Google Scholar 

  8. Perdriel CL, Arvia AJ, Ipohorski M (1986) Electrochemical faceting of polycrystalline gold in 1 M H2SO4. J Electroanal Chem Interfacial Electrochem 215:317–329

    Article  CAS  Google Scholar 

  9. Arvia AJ, Canullo JC, Custidiano E, Perdriel CL, Triaca WE (1986) Electrochemical faceting of metal electrodes. Electrochim Acta 31:1359–1368

    Article  CAS  Google Scholar 

  10. Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J Electroanal Chem 407:1–11

    Article  Google Scholar 

  11. Kondo T, Zegenhagen J, Takakusagi S, Uosaki K (2015) In situ real-time study on potential induced structure change at Au(111) and Au(100) single crystal electrode/sulfuric acid solution interfaces by surface x-ray scattering. Surf Sci 631:96–104

    Article  CAS  Google Scholar 

  12. Tunuli MS (1988) Gold chloride electrodes as electrochemical sensors for liquid chromatography. Talanta 35:697–700

    Article  CAS  Google Scholar 

  13. Izumi T, Watanabe I, Yokoyama Y (1991) Activation of a gold electrode by electrochemical oxidation-reduction pretreatment in hydrochloric acid. J Electroanal Chem Interfacial Electrochem 303:151–160

    Article  CAS  Google Scholar 

  14. Perez J, Gonzalez ER, Villullas HM (1998) Hydrogen evolution reaction on gold single-crystal electrodes in acid solutions. J Phys Chem B 102:10931–10935

    Article  CAS  Google Scholar 

  15. Burke LD, O'Mullane AP (2000) Generation of active surface states of gold and the role of such states in electrocatalysis. J Solid State Electrochem 4:285–297

    Article  CAS  Google Scholar 

  16. Dakkouri AS, Kolb DM (1999) Reconstruction of gold surfaces. In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment, and applications. Marcel Dekker, Inc., New York.

    Google Scholar 

  17. Magnussen OM, Hagebock J, Hotlos J, Behm RJ (1992) In situ scanning tunnelling microscopy observations of a disorder-order phase transition in hydrogensulfate adlayers on Au(111). Farad Discuss 94:329–338

    Article  CAS  Google Scholar 

  18. Kolb DM, Schneider J (1986) Surface reconstruction in electrochemistry: Au(100-(5 × 20), Au(111)-(1 × 23) and au(110)-(1 × 2). Electrochim Acta 31:929–936

    Article  CAS  Google Scholar 

  19. Yoshida K, Kuzume A, Broekmann P, Pobelov IV, Wandlowski T (2014) Reconstruction and electrochemical oxidation of Au(110) surface in 0.1 M H2SO4. Electrochim Acta 139:281–288

    Article  CAS  Google Scholar 

  20. Brust M, Gordillo GJ (2012) Electrocatalytic hydrogen redox chemistry on gold nanoparticles. J Am Chem Soc 134:3318–3321

    Article  CAS  Google Scholar 

  21. Yu Y, Gao Y, Hu K, Blanchard P-Y, Noël J-M, Nareshkumar T, Phani KL, Friedman G, Gogotsi Y, Mirkin MV (2015) Electrochemistry and electrocatalysis at single gold nanoparticles attached to carbon Nanoelectrodes. ChemElectroChem 2:58–63

    Article  CAS  Google Scholar 

  22. Lertanantawong B, O'Mullane AP, Surareungchai W, Somasundrum M, Burke LD, Bond AM (2008) Study of the underlying electrochemistry of polycrystalline gold electrodes in aqueous solution and electrocatalysis by large amplitude Fourier transformed alternating current voltammetry. Langmuir 24:2856–2868

    Article  CAS  Google Scholar 

  23. Cherevko S, Kulyk N, Chung C-H (2012) Utilization of surface active sites on gold in preparation of highly reactive interfaces for alcohols electrooxidation in alkaline media. Electrochim Acta 69:190–196

    Article  CAS  Google Scholar 

  24. Vesztergom S, Ujvári M, Láng GG (2013) Dual cyclic voltammetry with rotating ring–disk electrodes. Electrochim Acta 110:49–55

    Article  CAS  Google Scholar 

  25. Vesztergom S, Ujvári M, Láng GG (2012) RRDE experiments with independent potential scans at the ring and disk electrodes—3D map of intermediates and products of electrode processes. Electrochem Commun 19:1–4

    Article  CAS  Google Scholar 

  26. Cherevko S, Topalov AA, Katsounaros I, Mayrhofer KJJ (2013) Electrochemical dissolution of gold in acidic medium. Electrochem Commun 28:44–46

    Article  CAS  Google Scholar 

  27. Mesgar M, Kaghazchi P, Jacob T, Pichardo-Pedrero E, Giesen M, Ibach H, Luque NB, Schmickler W (2013) Chlorine-enhanced surface mobility of Au(100). ChemPhysChem 14:233–236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jeyabharathi.

Additional information

F. Sch. dedicates this contribution to Professor György Inzelt on the occasion of his 70th birthday. György is a true friend, great scientist, and erudite scholar with interest ranging out to all areas of human activity. I wish to have in future many more occasions to meet György and have rewarding conversations about scientific problems and the course of the world.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyabharathi, C., Ahrens, P., Hasse, U. et al. Identification of low-index crystal planes of polycrystalline gold on the basis of electrochemical oxide layer formation. J Solid State Electrochem 20, 3025–3031 (2016). https://doi.org/10.1007/s10008-016-3228-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3228-1

Keywords

Navigation