Skip to main content

Advertisement

Log in

Vapor Deposition of Perovskite Precursor PbI2 on Au and Graphite

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The energy level alignment that occurs at the interfaces in planar-hetero structured perovskite photovoltaic devices strongly influences the charge transport across the interface, and thus plays a crucial role in overall device performance. To directly observe the energy level alignment requires pristine homogeneous surfaces that are free of contamination including adventitious carbon. Co-evaporation offers the ability to grow perovskite thin films in-situ, and the method involves thermally evaporating the perovskite precursors such as PbI2 and CH3NH3I. Early reports have shown that the perovskite film formation and stoichiometry are problematic at ultralow coverages. In particular, it was reported that there was excessive PbI2 and a deficiency in CH3NH3I. Using photoemission spectroscopy, we investigated the perovskite precursor PbI2 on gold and highly oriented pyrolytic graphite (HOPG) surfaces. Results show that the nature of the surface and the deposition conditions can strongly influence the film formation. Excessive iodine observed in the initial evaporation stages appears to be substrate dependent, and this may influence the overall energy level alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J Am Chem Soc 131 (17), 6050 (2009).

    Article  CAS  Google Scholar 

  2. NREL, 2019.

  3. P. Schulz, E. Edri, S. Kirmayer, G. Hodes, D. Cahen and A. Kahn, Energy Environ. Sci. 7 (4), 1377 (2014).

    Article  CAS  Google Scholar 

  4. M. F. Lo, Z. Q. Guan, T. W. Ng, C. Y. Chan and C. S. Lee, Adv. Funct. Mater. 25 (8), 1213 (2015).

    Article  CAS  Google Scholar 

  5. P. Schulz, L. L. Whittaker-Brooks, B. A. MacLeod, D. C. Olson, Y. L. Loo and A. Kahn, Adv. Mater. Interfaces 2 (7), 1400532 (2015).

    Article  Google Scholar 

  6. C. G. Wang, X. L. Liu, C. C. Wang, Z. G. Xiao, C. Bi, Y. C. Shao, J. S. Huang and Y. L. Gao, J. Vac. Sci. Technol. B 33 (3), 032401 (2015).

    Article  Google Scholar 

  7. Q. K. Wang, R. B. Wang, P. F. Shen, C. Li, Y. Q. Li, L. J. Liu, S. Duhm and J. X. Tang, Adv. Mater. Interfaces 2 (3), 1400528 (2015).

    Article  Google Scholar 

  8. E. S. Thibau, A. Llanos and Z. H. Lu, Appl. Phys. Lett. 108 (2), 021602 (2016).

    Article  Google Scholar 

  9. X. Liu, C. Wang, L. Lyu, C. Wang, Z. Xiao, C. Bi, J. Huang and Y. Gao, Phys Chem Chem Phys 17 (2), 896 (2015).

    Article  CAS  Google Scholar 

  10. P. Liu, X. L. Liu, L. Lyu, H. P. Xie, H. Zhang, D. M. Niu, H. Huang, C. Bi, Z. G. Xiao, J. S. Huang and Y. L. Gao, Appl. Phys. Lett. 106 (19), 193903 (2015).

    Article  Google Scholar 

  11. X. Zhou, X. Li, Y. Liu, F. Huang and D. Zhong, Appl. Phys. Lett. 108 (12), 121601 (2016).

    Article  Google Scholar 

  12. H. Xu, Y. Wu, J. Cui, C. Ni, F. Xu, J. Cai, F. Hong, Z. Fang, W. Wang, J. Zhu, L. Wang, R. Xu and F. Xu, Phys Chem Chem Phys 18 (27), 18607 (2016).

    Article  CAS  Google Scholar 

  13. S. Olthof and K. Meerholz, Sci Rep 7, 40267 (2017).

    Article  CAS  Google Scholar 

  14. M. J. Bækbo, O. Hansen, I. Chorkendorff and P. C. K. Vesborg, RSC Adv. 8 (52), 29899 (2018).

    Article  Google Scholar 

  15. A. Llanos, E. S. Thibau and Z. H. Lu, J Vac Sci Technol A 34 (6), 060601 (2016).

    Article  Google Scholar 

  16. J. Borchert, I. Levchuk, L. C. Snoek, M. U. Rothmann, R. Haver, H. J. Snaith, C. J. Brabec, L. M. Herz and M. B. Johnston, ACS Appl. Mater. Interfaces 11 (32), 28851 (2019).

    Article  CAS  Google Scholar 

  17. K. Liang, D. B. Mitzi and M. T. Prikas, Chem. Mater. 10 (1), 403 (1998).

    Article  CAS  Google Scholar 

  18. Y. Wang, L. Gan, J. Chen, R. Yang and T. Zhai, Sci. Bull. 62 (24), 1654 (2017).

    Article  CAS  Google Scholar 

  19. J. Zhang, Y. Huang, Z. Tan, T. Li, Y. Zhang, K. Jia, L. Lin, L. Sun, X. Chen, Z. Li, C. Tan, J. Zhang, L. Zheng, Y. Wu, B. Deng, Z. Chen, Z. Liu and H. Peng, Ad. Mater, 20 1803194 (2018).

    Article  Google Scholar 

  20. J. Y. Zhang, T. Song, Z. J. Zhang, K. Ding, F. Huang and B. Q. Sun, J. Mater. Chem. C 3 (17), 4402 (2015).

    Article  CAS  Google Scholar 

  21. Y. Sun, Z. Zhou, Z. Huang, J. Wu, L. Zhou, Y. Cheng, J. Liu, C. Zhu, M. Yu, P. Yu, W. Zhu, Y. Liu, J. Zhou, B. Liu, H. Xie, Y. Cao, H. Li, X. Wang, K. Liu, X. Wang, J. Wang, L. Wang and W. Huang, Adv Mater 31 (17), 1806562 (2019).

    Article  Google Scholar 

  22. W. Zheng, B. Zheng, C. Yan, Y. Liu, X. Sun, Z. Qi, T. Yang, Y. Jiang, W. Huang, P. Fan, F. Jiang, W. Ji, X. Wang and A. Pan, Adv Sci 6 (7), 1802204 (2019).

    Article  Google Scholar 

  23. X. Liu, S. T. Ha, Q. Zhang, M. de la Mata, C. Magen, J. Arbiol, T. C. Sum and Q. Xiong, ACS Nano 9 (1), 687 (2015).

    Article  CAS  Google Scholar 

  24. N. Koch, Chem. Phys. Chem. 8 (10), 1438 (2007).

    Article  CAS  Google Scholar 

  25. D. S. Ahlawat, Mod. Phys. Lett. B 26 (16), 1250098 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ecker, B., Wang, K. & Gao, Y. Vapor Deposition of Perovskite Precursor PbI2 on Au and Graphite. MRS Advances 5, 403–410 (2020). https://doi.org/10.1557/adv.2020.65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.65

Navigation