Skip to main content
Log in

Simultaneous determination of guanine, adenine, thymine and cytosine with a simple electrochemical method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simple method for simultaneous detection of guanine, adenine, thymine and cytosine was set up by using a bare glassy carbon electrode in acetate buffer solution of pH 4.5. The peak current responses of these four DNA bases in this supporting electrolyte were significantly increased comparing with those in phosphate buffer solution and Tris-HCl, moreover, the peak current values were linearly dependent on the concentration of four DNA bases, respectively. Individual and simultaneous determinations of four bases were performed by controlling certain experimental conditions, and broad linear ranges and low detection limits (S/N = 3) were obtained. The assay processes do not need any separation or pretreatment steps. In addition, this method showed good selectivity, reproducibility, and stability and can be used for determination of the four bases content in real DNA sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Palecek E (1986) Electrochemical behaviour of biological macromolecules. Bioelectrochem Bioenerg 15:275–295

    Article  CAS  Google Scholar 

  2. Chen SM, Chen SV (2003) The bioelectrocatalytic properties of cytochrome C by direct electrochemistry on DNA film modified electrode. Electrochim Acta 48:513–529

    Article  CAS  Google Scholar 

  3. Cekan P, Sigurdsson ST (2009) Identification of single-base mismatches in duplex DNA by EPR spectroscopy. J Am Chem Soc 131:18054–18056

    Article  CAS  Google Scholar 

  4. Klampfla CW, Himmelsbach M, Buchberger W, Klein H (2002) Determination of purines and pyrimidines in beer samples by capillary zone electrophoresis. Anal Chim Acta 454:185–191

    Article  Google Scholar 

  5. Fan H, Yang FQ, Li SP (2007) Determination of purine and pyrimidine bases in natural and cultured Cordyceps using optimum acid hydrolysis followed by high performance liquid chromatography. J Pharmaceut Biomed 45:141–144

    Article  CAS  Google Scholar 

  6. Stentoft C, Vestergaard M, Loendahl P, Kristensen NB, Moorby JM, Jensen SK (2014) Simultaneous quantification of purine and pyrimidine bases, nucleosides and their degradation products in bovine blood plasma by high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1356:197–210

    Article  CAS  Google Scholar 

  7. Laourdakis CD, Merino EF, Neilson AP, Cassera MB (2014) Comprehensive quantitative analysis of purines and pyrimidines in the human malaria parasite using ion-pairing ultra-performance liquid chromatography–mass spectrometry. J Chromatogr B 967:127–133

    Article  CAS  Google Scholar 

  8. Chen G, Han XH, Zhang LY, Ye JN (2002) Determination of purine and pyrimidine bases in DNA by micellar electrokinetic capillary chromatography with electrochemical detection. J Chromatogr A 954:267–276

    Article  CAS  Google Scholar 

  9. Liu X, Luo LQ, Ding YP, Wu QS, Wei YL, Ye DX (2012) A highly sensitive method for determination of guanine, adenine and epinephrine using poly-melamine film modified glassy carbon electrode. J Electroanal Chem 675:47–53

    Article  CAS  Google Scholar 

  10. Zhang R, Jin GD, Hu XY (2009) Sensitive determination of adenine on poly (amidosulfonic acid)-modified glassy carbon electrode. J Solid State Electrochem 13:1545–1552

    Article  CAS  Google Scholar 

  11. Li HY, Wang XL, Yu ZY (2014) Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenine based on poly-melamine and nano Ag hybridized film-modified electrode. J Solid State Electrochem 18:105–113

    Article  CAS  Google Scholar 

  12. Liang X, Zhang XY, Wang FW, Xu M, Bao X (2014) Simultaneous determination of guanine and adenine on CuO shuttle-like nanocrystals/poly(neutral red) film on glassy carbon electrode. J Solid State Electrochem 18:3453–3461

    Article  CAS  Google Scholar 

  13. Liu T, Zhu XB, Cui L, Ju P, Qu XJ, Ai SY (2011) Simultaneous determination of adenine and guanine utilizing PbO2-carbon nanotubes-ionic liquid composite film modified glassy carbon electrode. J Electroanal Chem 651:216–221

    Article  CAS  Google Scholar 

  14. Zou LN, Li YM, Ye BX (2011) Voltammetric sensing of guanine and adenine using a glassy carbon electrode modified with a tetraoxocalix[2]arene[2] triazine Langmuir-Blodgett film. Microchim Acta 173:285–291

    Article  CAS  Google Scholar 

  15. Rajendiran T, Annamalai SK (2013) Simultaneous detection of guanine and adenine in DNA and meat samples using graphitized mesoporous carbon modified electrode. J Solid State Electrochem 17:583–590

    Article  Google Scholar 

  16. Niu XL, Yang W, Ren J, Guo H, Long SJ, Chen JJ, Gao JZ (2012) Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode. Electrochim Acta 80:346–353

    Article  CAS  Google Scholar 

  17. Wang HB, Zhang HD, Xu LL, Gan T, Huang KJ, Liu YM (2014) Electrochemical biosensor for simultaneous determination of guanine and adenine based on dopamine-melanin colloidal nanospheres–graphene composites. J Solid State Electrochem 18:2435–2442

    Article  CAS  Google Scholar 

  18. Huang KJ, Wang L, Wang HB, Gan T, Wu YY, Li J, Liu YM (2013) Electrochemical biosensor based on silver nanoparticles–polydopamine–graphene nanocomposite for sensitive determination of adenine and guanine. Talanta 114:43–48

    Article  CAS  Google Scholar 

  19. Zhang XY, Liang X, Xu M, Bao X, Wang FW, Yang ZS (2012) Electrodeposit nano-copper oxide on glassy carbon electrode for simultaneous detection of guanine and adenine. J Appl Electrochem 42:375–381

    Article  CAS  Google Scholar 

  20. Shahrokhian S, Rastgar S, Amini MK, Adeli M (2012) Fabrication of a modified electrode based on Fe3O4NPs/MWCNT nanocomposite: application to simultaneous determination of guanine and adenine in DNA. Bioelectrochemistry 86:78–86

    Article  CAS  Google Scholar 

  21. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613

    Article  CAS  Google Scholar 

  22. Tang C, Yogeswaran U, Chen SM (2009) Simultaneous determination of adenine guanine and thymine at multi-walled carbon nanotubes incorporated with poly (new fuchsin) composite film. Anal Chim Acta 636:19–27

    Article  CAS  Google Scholar 

  23. Shen Q, Wang XM (2009) Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode. J Electroanal Chem 632:149–153

    Article  CAS  Google Scholar 

  24. Arvand M, Mazhabi RM, Niaz A (2013) Simultaneous determination of guanine, adenine and thymine using a modified carbon paste electrode by TiO2 nanoparticles-magnesium (II) doped natrolite zeolite. Electrochim Acta 89:669–679

    Article  CAS  Google Scholar 

  25. Feng LJ, Zhang XH, Liu P, Xiong HY, Wang SF (2011) An electrochemical sensor based on single-stranded DNA–poly (sulfosalicylic acid) composite film for simultaneous determination of adenine, guanine, and thymine. Anal Biochem 419:71–75

    Article  CAS  Google Scholar 

  26. Kaur B, Srivastava R (2014) Synthesis of ionic liquids coated nanocrystalline zeolite materials and their application in the simultaneous determination of adenine, cytosine, guanine, and thymine. Electrochim Acta 133:428–439

    Article  CAS  Google Scholar 

  27. Anu Prathap MU, Srivastava R, Satpati B (2013) Simultaneous detection of guanine, adenine, thymine, and cytosine at polyaniline/MnO2 modified electrode. Electrochim Acta 114:285–295

    Article  CAS  Google Scholar 

  28. Wang P, Wu H, Dai Z, Zou XY (2011) Simultaneous detection of guanine, adenine, thymine and cytosine at choline monolayer supported multiwalled carbon nanotubes film. Biosens Bioelectron 26:3339–3345

    Article  CAS  Google Scholar 

  29. Deng CY, Xia YL, Xiao CH, Nie Z, Yang MH, Si SH (2012) Electrochemical oxidation of purine and pyrimidine bases based on the boron-doped nanotubes modified electrode. Biosens Bioelectron 31:469–474

    Article  CAS  Google Scholar 

  30. Ba X, Luo LQ, Ding YP, Zhang Z, Chu YL, Wang BJ, Ouyang XQ (2012) Poly(alizarin red)/graphene modified glassy carbon electrode for simultaneous determination of purine and pyrimidine. Anal Chim Acta 752:94–100

    Article  CAS  Google Scholar 

  31. Ghavamia R, Salimia A, Navaee A (2011) SiC nanoparticles-modified glassy carbon electrodes for simultaneous determination of purine and pyrimidine DNA bases. Biosens Bioelectron 26:3864–3869

    Article  Google Scholar 

  32. Xu Q, Liu XX, Li HB, Yin LN, Hu XY (2013) Electrochemical determination of purine and pyrimidine DNA bases based on the recognition properties of azocalix[4]arene. Biosens Bioelectron 42:355–361

    Article  Google Scholar 

  33. Ren S, Wang H, Zhang HY, Yu LQ, Li MJ, Li M (2015) Direct electrocatalytic and simultaneous determination of purine and pyrimidine DNA bases using novel mesoporous carbon fibers as electrocatalyst. J Electroanal Chem 750:65–73

    Article  CAS  Google Scholar 

  34. Kaur B, Srivastava R (2014) Ionic liquids coated Fe3O4 based inorganic–organic hybrid materials and their application in the simultaneous determination of DNA bases. Colloid Surface B 118:179–187

    Article  CAS  Google Scholar 

  35. Ouyang XQ, Luo LL, Ding YP, Liu BD, Xu D (2014) Simultaneous determination of purine and pyrimidine bases in DNA using poly(3,4-ethylenedioxythiophene)/graphene composite film. J Electroanal Chem 735:51–56

    Article  CAS  Google Scholar 

  36. Yin HS, Zhou YL, Ma Q, Ai SY, Ju P, Zhu LS, Lu LN (2010) Electrochemical oxidation behavior of guanine and adenine on graphene–Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochem 45:1707–1712

    Article  CAS  Google Scholar 

  37. Jeevagan AJ, John SA (2012) Electrochemical sensor for guanine using a self-assembled monolayer of 1, 8, 15, 22-tetraaminophthalocyanatonickel (II) on glassy carbon electrode. Anal Biochem 424:21–26

    Article  Google Scholar 

  38. Wang J (2000) Analytical electrochemistry, 2nd edn. Wiley–VCH, New York

    Book  Google Scholar 

  39. Wang GY, Shi GF, Chen XF, Yao RX, Chen FW (2015) A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Microchim Acta 182:315–322

    Article  CAS  Google Scholar 

  40. Davision JN (1972) The biochemistry of the nucleic acids, 7th edn. Cox and Nyman, Norfolk

    Google Scholar 

Download references

Acknowledgments

We are pleased to acknowledge the financial support of the China Postdoctoral Science Foundation (No. 2015 M572039), Natural Science Foundation of Shandong Province, China (No. BS2013HZ027), the National Natural Science Foundation of China (No. 21105023), and the Shandong Province High School Science and Technology Planning Project (No. J13LD51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhao.

Electronic supplementary materials

ESM 1

This section consists of Fig S1, Table S1 and Table S2. Fig. S1 shows the DPVs of 50 μM G, 50 μM A, 100 μM T and 100 μM C in various pH ABS. Table S1 shows the signal change of various foreign species on the peak currents of 20 μM G, 20 μM A, 50 μM T and 50 μM C in ABS (pH 4.5). Table S2 exhibits the determination of G, A, T and C using standard addition method in real samples (n = 3). (DOCX 64.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, X., Wang, Z. et al. Simultaneous determination of guanine, adenine, thymine and cytosine with a simple electrochemical method. J Solid State Electrochem 20, 2223–2230 (2016). https://doi.org/10.1007/s10008-016-3227-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3227-2

Keywords

Navigation