Skip to main content
Log in

A model for the voltammetric behaviour of TiO2 memristors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A model is solved based on the Nernst Planck equation to calculate the diffusion and migration currents for a species in a thin layer (about 200 nm) confined between two electrodes. This is proposed to account for the current voltage behaviour of a memristor constructed in a similar fashion. At the working electrode, an electroactive species is oxidised and at the counter electrode, the same species is reduced. Upon application of a simple voltammetric waveform, the migration current exhibits a resistance profile at slow scan rates and hysteresis at faster scan rates, indicative of memristor behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig 6

Similar content being viewed by others

References

  1. Gale E (2014) Semicond Sci Technol 29:104004–104014

    Article  Google Scholar 

  2. Chua L (2011) Appl Phys A Mater Sci Process 102:765–783

    Article  CAS  Google Scholar 

  3. Strukov DB, Snider GS, Stewart DR, Williams RS (2009) Nature 453:80–83, Correction Nature (2009) 459 1154

    Article  Google Scholar 

  4. Shoute LCT, Pekas N, Wu Y, McCreery RL (2011) Appl Phys A Mater Sci Process 102:841–849

    Article  CAS  Google Scholar 

  5. Wu J, McCreery RL (2009) J Electrochem Soc 156:P29–P37

    Article  CAS  Google Scholar 

  6. Strunk J, Vining WC, Bell AT (2010) J Phys Chem C 114:16937–16945

    Article  CAS  Google Scholar 

  7. Zhao J, Xing W, Li Y, Lu K (2015) Materials Letters 145:332–335

  8. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surf Sci Rep 62:219–270

    Article  CAS  Google Scholar 

  9. Szot K, Speier W, Bihlmayer G, Waser R (2006) Nat Mater 5:312–320

    Article  CAS  Google Scholar 

  10. Malato S, Blanco J, Vidal A, Richter C (2002) Appl Catal B 37:1–15

    Article  CAS  Google Scholar 

  11. Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R (2000) Catal Today 58:199–230

    Article  CAS  Google Scholar 

  12. Bahnemann D (2004) Sol Energy 77:445–459

    Article  CAS  Google Scholar 

  13. Devipriya S, Yesodharan S (2005) Sol Energy Mater Sol Cells 86:309–348

    Article  CAS  Google Scholar 

  14. Britz D (1981) Digital simulation in electrochemistry. Springer Verlag, Berlin

    Book  Google Scholar 

  15. Feldberg SW (1969) In: Bard AJ (ed) In electroanalytical chemistry, vol 3. Marcel Dekker, New York

    Google Scholar 

  16. Cassidy J (1996) In: Lyons MEG (ed) Chapter 6 in 'Electroactive polymer electrochemistry part II, fundamentals and applications'. Plenum Press, New York

    Google Scholar 

  17. Palys MJ, Stojek Z (2002) J Electroanal Chem 534:65–73

    Article  CAS  Google Scholar 

  18. Hyk W, Stojek Z (2013) Electrochem Commun 34:192–195

    Article  CAS  Google Scholar 

  19. Bieniasz LK (2004) J Electroanal Chem 565:251–271

    Article  CAS  Google Scholar 

  20. Stevens NPC, Bond AM (2002) J Electroanal Chem 538–539:25–33

    Article  Google Scholar 

  21. Myland JC, Oldham KB (2004) J Electroanal Chem 568:101–114

    Article  CAS  Google Scholar 

  22. Belding SR, Compton RG (2012) J Electroanal Chem 683:1–13

    Article  CAS  Google Scholar 

  23. Limon-Petersen JG, Dickinson EJF, Belding SR, Rees NV, Compton RG (2010) J Electroanal Chem 650:135–142

    Article  CAS  Google Scholar 

  24. Barnes EO, Wang Y, Limon-Petersen JG, Belding SR, Compton RG (2011) J Electroanal Chem 659:25–35

    Article  CAS  Google Scholar 

  25. Barnes EO, Belding SR, Compton RG (2011) J Electroanal Chem 660:185–194

    Article  CAS  Google Scholar 

  26. van Soestbergen M (2012) Electrochem Commun 20:105–108

    Article  Google Scholar 

  27. Aoki KJ, Li C, Nishiumi T, Chen J (2013) J Electroanal Chem 695:24–29

    Article  CAS  Google Scholar 

  28. Oldham KB, Myland JC, Bond AM (2012) Electrochemical science and technology, fundamentals and applications. Wiley, Chichester

    Google Scholar 

  29. Cassidy JF, Breen W, McGee A, Vos JG, Lyons MEG (1992) Electroanalysis 4:751–756

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Cassidy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassidy, J.F., Fox, D. & Betts, A.J. A model for the voltammetric behaviour of TiO2 memristors. J Solid State Electrochem 20, 1229–1234 (2016). https://doi.org/10.1007/s10008-015-3109-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3109-z

Keywords

Navigation