Skip to main content
Log in

Redox driven conductance changes for resistive memory

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The relationship between bias-induced redox reactions and resistance switching is considered for memory devices containing TiO2 or a conducting polymer in “molecular heterojunctions” consisting of thin (2–25 nm) films of covalently bonded molecules, polymers, and oxides. Raman spectroscopy was used to monitor changes in the oxidation state of polythiophene in Au/P3HT/SiO2/Au devices, and it was possible to directly determine the formation and stability of the conducting polaron state of P3HT by applied bias pulses [P3HT = poly(3-hexyl thiophene)]. Polaron formation was strongly dependent on junction composition, particularly on the interfaces between the polymer, oxide, and electrodes. In all cases, trace water was required for polaron formation, leading to the proposal that water reduction acts as a redox counter-reaction to polymer oxidation. Polaron stability was longest for the case of a direct contact between Au and SiO2, implying that catalytic water reduction at the Au surface generated hydroxide ions which stabilized the cationic polaron. The spectroscopic information about the dependence of polaron stability on device composition will be useful for designing and monitoring resistive switching memory based on conducting polymers, with or without TiO2 present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Scott, L.D. Bozano, Adv. Mater. 19, 1452 (2007)

    Article  Google Scholar 

  2. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  3. J. Wu, R.L. McCreery, J. Electrochem. Soc. 156, P29 (2009)

    Article  Google Scholar 

  4. J. Wu, K. Mobley, R. McCreery, J. Chem. Phys. 126, 24704 (2007)

    Article  Google Scholar 

  5. R. McCreery, J. Wu, R.J. Kalakodimi, Phys. Chem. Chem. Phys. 8, 2572 (2006)

    Article  Google Scholar 

  6. A. Nowak, R. McCreery, J. Am. Chem. Soc. 126, 16621 (2004)

    Article  Google Scholar 

  7. S. Barman, F. Deng, R. McCreery, J. Am. Chem. Soc. 130, 11073 (2008)

    Article  Google Scholar 

  8. M.J. Panzer, C.D. Frisbie, Adv. Funct. Mater. 16, 1051 (2006)

    Article  Google Scholar 

  9. L.G. Kaake, Y. Zou, M.J. Panzer, C.D. Frisbie, X.Y. Zhu, J. Am. Chem. Soc. 129, 7824 (2007)

    Article  Google Scholar 

  10. J.H. Zhao, D.J. Thomson, M. Pilapil, R.G. Pillai, G.M.A. Rahman, M.S. Freund, Nanotechnology 21, 134003 (2010)

    Article  ADS  Google Scholar 

  11. G.M.A. Rahman, J.-H. Zhao, D.J. Thomson, M.S. Freund, J. Am. Chem. Soc. 131, 15600 (2009)

    Article  Google Scholar 

  12. J.H. Zhao, D.J. Thomson, R.G. Pillai, M.S. Freund, Appl. Phys. Lett. 94, 092113 (2009)

    Article  ADS  Google Scholar 

  13. R.G. Pillai, J.H. Zhao, M.S. Freund, D.J. Thomson, Adv. Mater. 20, 49 (2008)

    Article  Google Scholar 

  14. J.H. Krieger, S.V. Trubin, S.B. Vaschenko, N.F. Yudanov, Synth. Met. 122, 199 (2001)

    Article  Google Scholar 

  15. S.G. Robinson, D.H. Johnston, C.D. Weber, M.C. Lonergan, Chem. Mater. 22, 241 (2010)

    Article  Google Scholar 

  16. H.J. Lee, Z.X. Jin, A.N. Aleshin, J.Y. Lee, M.J. Goh, K. Akagi, Y.S. Kim, D.W. Kim, Y.W. Park, J. Am. Chem. Soc. 126, 16722 (2004)

    Article  Google Scholar 

  17. J.L. Bredas, R. Silbey, D.S. Boudreaux, R.R. Chance, J. Am. Chem. Soc. 105, 6555 (1983)

    Article  Google Scholar 

  18. J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, J. Phys. Chem. C 112, 602 (2008)

    Article  Google Scholar 

  19. J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, J. Phys. Chem. C 112, 590 (2008)

    Article  Google Scholar 

  20. P. Knauth, H.L. Tuller, J. Appl. Phys. 85, 897 (1999)

    Article  ADS  Google Scholar 

  21. D. Mardare, C. Baban, R. Gavrila, M. Modreanu, G.I. Rusu, Surf. Sci. 507–510, 468 (2002)

    Article  Google Scholar 

  22. S. John Paul, D.P. Matthew, J.J. Yang, A. Shaul, A.L.D. Kilcoyne, M.-R. Gilberto, R.S. Williams, Adv. Mater. 22, 3573 (2010)

    Article  Google Scholar 

  23. D.B. Strukov, R.S. Williams, Appl. Phys. A, Mater. Sci. Process. 94, 515 (2009)

    Article  ADS  Google Scholar 

  24. N. Gergel-Hackett, B. Hamadani, B. Dunlap, J. Suehle, C. Richter, C. Hacker, D. Gundlach, IEEE Electron Device Lett. 30, 706 (2009)

    Article  ADS  Google Scholar 

  25. J.J. Yang, M.D. Pickett, X. Li, D. Ohlberg, D. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  26. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  27. R. McCreery, Method for conductance switching in molecular electronic junctions, U.S. Patent # 6,855,950 (2005)

  28. A.O. Solak, S. Ranganathan, T. Itoh, R.L. McCreery, Electrochem. Solid-State Lett. 5, E43 (2002)

    Article  Google Scholar 

  29. A.O. Solak, L.R. Eichorst, W.J. Clark, R.L. McCreery, Anal. Chem. 75, 296 (2003)

    Article  Google Scholar 

  30. A.P. Bonifas, R.L. McCreery, Chem. Mater. 20, 3849 (2008)

    Article  Google Scholar 

  31. F. Anariba, S.H. DuVall, R.L. McCreery, Anal. Chem. 75, 3837 (2003)

    Article  Google Scholar 

  32. Y. Gao, T.P. Martin, E.T. Niles, A.J. Wise, A.K. Thomas, J.K. Grey, J. Phys. Chem. C 114, 15121 (2010)

    Google Scholar 

  33. E. Klimov, W. Li, X. Yang, G.G. Hoffmann, J. Loos, Macromolecules 39, 4493 (2006)

    Article  ADS  Google Scholar 

  34. G. Louarn, M. Trznadel, J.P. Buisson, J. Laska, A. Pron, M. Lapkowski, S. Lefrant, J. Phys. Chem. 100, 12532 (1996)

    Article  Google Scholar 

  35. M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant, I. Baltog, J. Raman Spectrosc. 29, 825 (1998)

    Article  ADS  Google Scholar 

  36. A.S. Dhoot, G.M. Wang, D. Moses, A.J. Heeger, Phys. Rev. Lett. 96, 246403 (2006)

    Article  ADS  Google Scholar 

  37. D. Ofer, R.M. Crooks, M.S. Wrighton, J. Am. Chem. Soc. 112, 7869 (1990)

    Article  Google Scholar 

  38. N. Vukmirovic, L.-W. Wang, J. Phys. Chem. B 113, 409 (2008)

    Article  Google Scholar 

  39. E.L. Ratcliff, J.L. Jenkins, K. Nebesny, N.R. Armstrong, Chem. Mater. 20, 5796 (2008)

    Article  Google Scholar 

  40. J. Hou, Z. Tan, Y. Yan, Y. He, C. Yang, Y. Li, J. Am. Chem. Soc. 128, 4911 (2006)

    Article  Google Scholar 

  41. B.S. Ong, Y. Wu, P. Liu, S. Gardner, Adv. Mater. 17, 1141 (2005)

    Article  Google Scholar 

  42. Y. Wu, P. Liu, S. Gardner, B.S. Ong, Chem. Mater. 17, 221 (2004)

    Article  Google Scholar 

  43. B.S. Ong, Y. Wu, P. Liu, S. Gardner, J. Am. Chem. Soc. 126, 3378 (2004)

    Article  Google Scholar 

  44. S. Ranganathan, R.L. McCreery, S.M. Majji, M. Madou, J. Electrochem. Soc. 147, 277 (2000)

    Article  Google Scholar 

  45. X. Yu, C. Jeong Ho, L. Jiyoul, P.P. Ruden, C.D. Frisbie, Adv. Mater. 21, 2174 (2009)

    Article  Google Scholar 

  46. M.J. Panzer, C.D. Frisbie, J. Am. Chem. Soc. 129, 6599 (2007)

    Article  Google Scholar 

  47. S.H. Szczepankiewicz, J.A. Moss, M.R. Hoffmann, J. Phys. Chem. B 106, 7654 (2002)

    Article  Google Scholar 

  48. S.H. Szczepankiewicz, J.A. Moss, M.R. Hoffmann, J. Phys. Chem. B 106, 2922 (2002)

    Article  Google Scholar 

  49. T. Driscoll, J. Quinn, S. Klein, H.T. Kim, B.J. Kim, V.P. Yu, M.D. Ventra, D.N. Basov, Appl. Phys. Lett. 97, 093502 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. McCreery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoute, L.C.T., Pekas, N., Wu, Y. et al. Redox driven conductance changes for resistive memory. Appl. Phys. A 102, 841–850 (2011). https://doi.org/10.1007/s00339-011-6268-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6268-5

Keywords

Navigation