Skip to main content
Log in

Electrochemical study of H3PMo12 retention on Vulcan carbon grafted with NH2 and OH groups

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we show a comparative study based on the effects of specific chemical functional groups (–OH, –NH2), grafted on Vulcan carbon (VC) with the incorporation of a specific polyoxometalate (POM), PMo12 (H3PMo12O40), to improve electrochemical performance. We observed a decrease in the specific surface area of the grafted matrices (VC-OH and VC-NH2) [1], and the same trend was observed for PMo12 (POM) incorporation. Our electrochemical studies showed low concentrations of POM in unmodified VCs and higher POM concentrations for grafted matrices (VC-OH and VC-NH2) after 500 voltammetric cycles, especially for the VC grafted with –OH groups (VC-OH-POM). Mechanisms have been proposed for POM interaction with the grafted groups in carbon, emphasizing the role of aqueous medium and redox activity of POM. Cyclic voltammograms suggested the POM anchoring through –OH groups with a strong interaction as a covalent bond, resulting in a surface coverage of 1.66 × 10−11 mol cm−2. Surface modifications could be extrapolated to other carbons, and the materials could be employed for different potential applications such as photocatalysis, amperometric sensors, fuel cells, and supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Scheme 2
Fig. 5
Scheme 3
Scheme 4
Fig. 6

Similar content being viewed by others

References

  1. Pognon G, Brousse T, Bélanger D (2011) Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors. Carbon 49:13401348

    Article  CAS  Google Scholar 

  2. Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198

    Article  CAS  Google Scholar 

  3. Pourbeyram S, Moosavifar M, Hasanzadeh V (2014) Electrochemical characterization of encapsulated polyoxometalates (POMs) into the zeolite. J Electroanal Chem 74:19–24

    Article  CAS  Google Scholar 

  4. Xu L, Boring E, Hill CL (2000) Polyoxometalate-modified fabrics: new catalytic materials for low-temperature aerobic oxidation. J Catal 195:394–405

    Article  CAS  Google Scholar 

  5. Lu TT, Xu XX, Li HL, Li ZY, Zhang X, Jz O, Mei ML (2015) The loading of coordination complex modified polyoxometalate nanovelts on activated carbon fiber: a feasible strategy to obtain visible light active and highly efficient polyoxometalate based photocatalyst. Dalton Trans 44:2267–2275

    Article  CAS  Google Scholar 

  6. Mukai SR, Sugiyama T, Tamon H (2003) Immobilization of heteropoly acids in the network structure of carbon gels. Appl Catal A 256:99–105

    Article  CAS  Google Scholar 

  7. Wang X, Wang E, Lan Y, Hu C (2002) Renewable PMo12-based inorganic–organic hybrid material bulk-modified carbon paste electrode: preparation, electrochemistry and electrocatalysis. Electroanal 14:1116–1121

    Article  CAS  Google Scholar 

  8. Liu H, He P, Li Z, Sun C, Shi L, Liu Y, Zhu G, Li J (2005) An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochem Commun 7:1357–1363

    Article  CAS  Google Scholar 

  9. Cuentas-Gallegos AK, Miranda-Hernández M, Vargas-Ocampo A (2009) Dispersion effect of Cs-PW particles on multiwalled carbon nanotubes and their electrocatalytic activity on the reduction of bromate. Electrochim Acta 54:4378–4383

    Article  CAS  Google Scholar 

  10. Ji Y, Huang L, Hu J, Streb C, Song YF (2015) Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ Sci 8:776–789

    Article  CAS  Google Scholar 

  11. Genovese M, Lian K (2015) Polyoxometalate modified inorganic–organic nanocomposite materials for energy storage applications: a review. Curr Opin Solid St M 19:126–137

    Article  CAS  Google Scholar 

  12. Cuentas-Gallegos AK, Gonzales-Toledo M, Rincón ME (2007) Nanocomposite hybrid material based on carbon nanofibers and polyoxometalates. Rev Mex Fis S 53:91–95

    CAS  Google Scholar 

  13. Cuentas-Gallegos AK, Martínez-Rosales R, Baibarac M, Gómez-Romero P, Rincón ME (2007) Electrochemical supercapacitors based on novel hybrid materials made of carbon nanotubes and polyoxometalates. Electrochem Commun 9:2088–2092

    Article  CAS  Google Scholar 

  14. Baeza-Rostro DA, Cuentas-Gallegos AK (2013) Capacitance improvement of carbon aerogels by the immobilization of polyoxometalates nanoparticles. Curr Opin Solid St M 13:203–207

    Google Scholar 

  15. Ruiz V, Suarez-Guevara J, Gómez-Romero P (2012) Hybrid electrodes based on polyoxometaltes-carbon materials for electrochemical supercapacitors. Electrochem Commun 24:35–38

    Article  CAS  Google Scholar 

  16. Suarez-Guevara J, Ruiz V, Gómez-Romero P (2014) Hybrid energy storage: high voltage aqueous supercapacitors based on activated carbon-phosphotungstate hybrid materials. J Mater Chem A 2:1014–1021

    Article  CAS  Google Scholar 

  17. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199–217

    Article  CAS  Google Scholar 

  18. López-Salinas E, Hernández-Cortez JG, Shifter I, Torres-García E, Navarrete J, Gutierrez-Carrillo A, López T, Lottic PP, Bersani D (2000) Thermal stability of 12-tungstophosphoric acid supported on zirconia. Appl Catal A 193:215–225

    Article  Google Scholar 

  19. Kozhevnikov IV, Sinnema A, Jansen RJJ, Pamin K, Van Bekkum H (1995) New acid catalyst comprising heteropoly acid on a mesoporous molecular sieve MCM-41. Catal Lett 30:241–252

    Article  Google Scholar 

  20. Pizzio LR, Cacares CV, Blanco MN (1998) Acid catalysts prepared by impregnation of tungstophosphoric acid solutions on different supports. Appl Catal A 167:283–294

    Article  CAS  Google Scholar 

  21. Edwards JC, Thiel CY, Benac B, Knifton JF (1998) Solid-state NMR and FT-IR investigation of 12-tungstophosphoric acid on TiO2. Catal Lett 51:77–83

    Article  CAS  Google Scholar 

  22. Keita B, Nadjo L (1987) Electrocatalysis by electrodeposited heteropolyanions and isopolyanions. J Electroanal Chem 227:265–270

    Article  CAS  Google Scholar 

  23. Keita B, Nadjo L (1988) Surface modifications with heteropoly and isopoly oxometalates: part III. Electrode modification procedures, the necessity of proton interference during the electrodeposition of the h.e.r. catalyst. J Electroanal Chem 247:157–172

    Article  CAS  Google Scholar 

  24. Cuentas-Gallegos AK, Lira-Cantú M, Casañ-Pastor N, Gómez-Romero P (2005) Nanocomposite hybrid molecular materials for application in solid state electrochemical supercapacitors. Adv Funct Mater 15:1125–1133

    Article  CAS  Google Scholar 

  25. Gómez-Romero P, Chojak M, Cuentas-Gallegos K, Asensio JA, Kulesza PJ, Casañ-Pastor N, Lira-Cantú M (2003) Hybrid organic–inorganic nanocomposite materials for application in solid state electrochemical supercapacitors. Electrochem Commun 5:149–153

    Article  CAS  Google Scholar 

  26. Vaillant J, Lira-Cantú M, Cuentas-Gallegos K, Casañ-Pastor N, Gómez-Romero P (2006) Chemical synthesis of hybrid materials based on PAni and PEDOT with polyoxometalates for electrochemical supercapacitors. Prog Solid State Chem 34:147–159

    Article  CAS  Google Scholar 

  27. Alcañiz-Monge J, Trautwein G, Parres-Esclapez S, Maciá-Agulló JA (2008) Influence of microporosity of activated carbons as support of polyoxometalates. Microporous Mesoporous Mater 115:440–446

    Article  CAS  Google Scholar 

  28. Song Y, Wang E, Kang Z, Lan Y, Tian C (2007) Synthesis of polyoxometalates-functionalized carbon nanotubes composites and relevant electrochemical properties study. Mater Res Bull 42:1485–1491

    Article  CAS  Google Scholar 

  29. Fei B, Lu H, Hu Z, Xin JH (2006) Solubilization, purification and functionalization of carbon nanotubes using polyoxometalate. Nanotechnology 17:1589–1593

    Article  CAS  Google Scholar 

  30. Kang Z, Wang Y, Wang E, Lian S, Gao L, You W, Hu C, Xu L (2004) Polyoxometalates nanoparticles:synthesis, characterization and carbon nanotube modification. Solid State Commun 129:559–564

    Article  CAS  Google Scholar 

  31. Cuentas-Gallegos AK, Jiménez-Peñaloza S, Baeza-Rostro DA, Germán-García A (2010) Influence of the functionalization degree of multiwalled carbon nanotubes on the immobilization of polyoxometalates and its effect on their electrochemical behavior. J New Mater Electrochem Syst 13:369–376

    CAS  Google Scholar 

  32. Cuentas-Gallegos AK, Martínez-Rosales R, Rincón ME, Hirata GA, Orozco G (2006) Design of hybrid materials based on carbon nanotubes and polyoxometalates. Opt Mater 29:126–133

    Article  CAS  Google Scholar 

  33. Cuentas-Gallegos AK, Zamudio-Flores A, Casas-Cabanas M (2011) Dispersion of SiW12 nanopaticles on highly oxidized multiwalled carbon nanotubes. J Nano Res 14:11–18

    Article  CAS  Google Scholar 

  34. Wang S, Li H, Li S, Liu F, Wu D, Feng X, Wu L (2013) Electrochemical-reduction-assisted assembly of a polyoxometalate/graphene nanocomposite and its enhanced lithium-storage performance. Chem Eur J 19:10895–10902

    Article  CAS  Google Scholar 

  35. Tessonnier JP, Goubert-Renaudin S, Alia S, Yan Y, Barteau MA (2012) Structure, stability, and electronic interactions of polyoxometalates on functionalized graphene sheets. Langmuir 29:393–402

    Article  CAS  Google Scholar 

  36. Fernandes DM, Freire C (2014) Carbon nanomaterial-phosphomolybdate composites for oxidative electrocatalysis. ChemElectroChem 2:269–279

    Article  CAS  Google Scholar 

  37. Petit C, Bandosz TJ (2009) Graphite oxide/polyoxometalate nanocomposite as adsorbents of ammonia. J Phys Chem C 113:3800–3809

    Article  CAS  Google Scholar 

  38. Cheng L, Liu J, Dong S (2000) Layer-by-layer assembly of multilayer films consisting of silicotungstate and a cationic redox polymer on 4-aminobenzoic acid modified glassy carbon electrode and their electrocatalytic effects. Anal Chim Acta 417:133–142

    Article  CAS  Google Scholar 

  39. Martel D, Gross M (2007) Electrochemical study of multilayer films built on glassy carbon electrode with polyoxometalate anions and two multi-charged molecular cationic species. J Solid State Electr 11:421–429

    Article  CAS  Google Scholar 

  40. Garrigue P, Delville MH, Labrugere C, Cloutet E, Kulesza PJ, Morand JP, Kuhn A (2004) Top-down approach for the preparation of colloidal carbon nanoparticles. Chem Mater 16:2984–2986

    Article  CAS  Google Scholar 

  41. Stein A, Wang A, Flarke MA (2009) Functionalization of porous carbon materials with designed pore architecture. Adv Mater 21:265–293

    Article  CAS  Google Scholar 

  42. Pech D, Guay D, Brousse T, Bélanger D (2008) Concept for charge storage in electrochemical capacitors with functionalized carbon electrodes. Electrochem Solid St 11:A202–A205

    Article  CAS  Google Scholar 

  43. Toupin M, Bélanger D (2008) Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations. Langmuir 24:1910–1917

    Article  CAS  Google Scholar 

  44. Pognon G, Brousse T, Demarconnay L, Bélanger D (2011) Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. J Power Sources 196:4117–4122

    Article  CAS  Google Scholar 

  45. Lu M, Nolte WM, He T, Corley DA, Tour JM (2009) Direct covalent grafting of polyoxometalates onto Si surfaces. Chem Mater 21:442–446

    Article  CAS  Google Scholar 

  46. Gamelas JAF, Evtuguin DV, Esculcas AP (2007) Transition metal substituted polyoxometalates supported on amine-functionalized silica. Transit Met Chem 32:1061–1067

    Article  CAS  Google Scholar 

  47. Zhang X, Wu W, Wang J, Liu C, Quian S (2008) Molybdenum polyoxometalate impregnated amino-functionalized mesoporous silica thin films as multifunctional materials for photochromic and electrochemical applications. J Mater Res 23:18–26

    Article  CAS  Google Scholar 

  48. Balamurugan A, Chen SM (2007) Silicomolybdate doped polypyrrole film modified glassy carbon electrode for electrocatalytic reduction of Cr(VI). J Solid State Electr 11:1679–1687

    Article  CAS  Google Scholar 

  49. Fernandes DM, Brett CMA, Cavaleiro AMV (2011) Layer-by-layer self-assembly and electrocatalytic properties of poly(ethylenimine)-silicotungstate multilayer composite films. J Solid State Electr 15:811–819

    Article  CAS  Google Scholar 

  50. Lyskawa J, Gronde A, Belanger D (2010) Chemical modifications of carbon powders with aminophenyl and cyanophenyl groups and a study of their reactivity. Carbon 48:1271–1278

    Article  CAS  Google Scholar 

  51. Obradovic MD, Vukovic GD, Stevanovic SI, Panic VV, Uskokovic PS, Kowal A, SLJ G (2009) A comparative study of the electrochemical properties of carbon nanotubes and carbon black. J Electroanal Chem 634:22–30

    Article  CAS  Google Scholar 

  52. Hernández López S, Santiago Enrique V (2013) In: Hany A El-Shemy, InTech (ed) Soybean Oil-Based Polymers, ISBN 978–953–51–0977–8

  53. Mayo DW, Miller FA, Hannah RW (2004) Course notes on the interpretation of infrared and Raman spectra. John Wiley & Sons, Inc,, Hoboken

    Book  Google Scholar 

  54. Larkin P (2011) Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier, USA

    Google Scholar 

  55. Kumar NA, Choi HJ, Shin YR, Chang DW, Dai L, Baek JB (2012) Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6:1715–1723

    Article  CAS  Google Scholar 

  56. Li Y, Wang J, Li X, Geng D, Li R, Sun X (2011) Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem Commun 47:9438–9440

    Article  CAS  Google Scholar 

  57. Buffa F, Hu H, Resasco DE (2005) Side-wall functionalization of single-walled carbon nanotubes with 4-hydroxymethylaniline followed by polymerization of ∈ − caprolactone. Macromolecules 38:8258–8263

    Article  CAS  Google Scholar 

  58. Raymundo-Piñero E, Leroux F, Béguin F (2006) A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv Mater 18:1877–1882

    Article  CAS  Google Scholar 

  59. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  60. Li H, Xi H, Zhu S, Wen Z, Wang R (2006) Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon. Microporous Mesoporous Mater 96:357–362

    Article  CAS  Google Scholar 

  61. Zhou Z, Zhang Z, Peng H, Qin Y, Li G, Chen K (2014) Nitrogen- and oxygen-containing activated carbon nanotubes with improved capacitive properties. RCS Adv 4:5524–5530

    CAS  Google Scholar 

  62. Santos LM, Ghilane J, Fave C, Lacaze PC, Randriamahazaka H, Abrantes LM, Lacroix JC (2008) Electrografting polyaniline on carbon through the electroreduction of diazonium salts and the electrochemical polymerization of aniline. J Phys Chem C 112:16103–16109

    Article  CAS  Google Scholar 

  63. Sharma LR, Manchanda AK, Singh G, Verma RS (1982) Cyclic voltammetry of aromatic amines in aqueous and Non-aqueous media. Electrochim Acta 27:223–233

    Article  CAS  Google Scholar 

  64. Bélanger D, Pinson J (2011) Electrografting: a powerful method for surface modification. Chem Soc Rev 40:3995–4048

    Article  CAS  Google Scholar 

  65. Isikli S, Díaz R (2012) Substrate-dependence performance of supercapacitors based on an organic redox couple impregnated carbon. J Power Sources 206:53–58

    Article  CAS  Google Scholar 

  66. Martel D, SOjic N, Kuhn A (2002) A simple student experiment for teaching surface electrochemistry: adsorption of polyoxometalate on graphite electrodes. J Chem Educ 79:349–352

    Article  CAS  Google Scholar 

  67. Timofeeva MN (2003) Acid catalysis by heteropoly acids. Appl Catal A 256:19–35

    Article  CAS  Google Scholar 

  68. Vairalakshmi M, Raj V, Sami P, Rajasekaran K (2011) Studies on electron transfer reactions: oxidation of phenol and ring-substituted phenols by heteropoly 11-tungstophosphovanadate(V) in aqueous acidic medium. Transit Met Chem 36:875–882

    Article  CAS  Google Scholar 

  69. Manivel A, Asiri K, Alamry KA, Lana-Villarreal T, Anandan S (2014) Interfacially synthesized PAni-PMo12 hybrid material for supercapacitor applications.  B Mater Sci 37:861–869

  70. Papagianni GG, Stergiou DV, Armatas GS, Kanatzidis MG, Prodromidis MI (2012) Synthesis, characterization and performance of polyaniline–polyoxometalates (XM12, X=P;Si and M=Mo,W) composites as electrocatalysts of bromates. Sensor Actuat B-Chem 173:346–353

Download references

Acknowledgments

We acknowledge the technical work of Patricia Altuzar-Coello and Rogelio Morán Elvira from Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Jorge Dominguez Maldonado from Centro de Investigación Científica de Yucatan, and Julio Mata Salazar and Dr. Alberto Herrera from CINVESTAV-Queretaro. Additionally, we are grateful for the financial support granted from Consejo Nacional de Ciencia y Tecnología Basic Science Project 154259, Project IN105410 and IN112414 from Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica. We would also like to thank the University of Nantes for providing invited professorship to AKCG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.K. Cuentas-Gallegos.

Electronic supplementary material

ESM 1

(DOCX 819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuentas-Gallegos, A., López-Cortina, S., Brousse, T. et al. Electrochemical study of H3PMo12 retention on Vulcan carbon grafted with NH2 and OH groups. J Solid State Electrochem 20, 67–79 (2016). https://doi.org/10.1007/s10008-015-2994-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2994-5

Keywords

Navigation