Skip to main content
Log in

Studying the ion transfer across liquid interface of thin organic-film-modified electrodes in the presence of glucose oxidase

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A coupled electron-ion transfer reaction at thin organic-film-modified electrodes (TFE) is studied in the presence of glucose oxidase (GOx) under voltammetric conditions. TFE consists of a graphite electrode modified with a nitrobenzene solution of decamethylferrocene (DMFC) as a redox mediator and tetrabuthylammonium perchlorate as an organic-supporting electrolyte, in contact with aqueous buffer solutions containing percholarte ions and GOx. The redox turnover of DMFC coupled with perchlorate transfer across water|nitrobenzene interface composes the coupled electron-ion transfer reaction. Glucose oxidase strongly adsorbs at the liquid|liquid interface affecting the coupled electron-ion transfer reaction by reducing the surface area of the liquid interface, prompting coadsorption of the transferring ion and lowering down slightly the rate of the ion transfer reaction. Although the enzyme exists as a polyvalent anion over the pH interval from 5.6 to 7, it does not participate directly in the ionic current across the liquid interface and percholrate remains the main transferring ion. Raman spectroscopic data, together with the voltammetric data collected by three-phase droplet electrodes, indicate that the adsorption of the enzyme does not depend either on the redox mediator (DMFC) or the organic-supporting electrolyte, while being driven by intrinsic interactions of the enzyme with the organic solvent. The overall electrochemical mechanism is mathematically modeled by considering linear adsorption isotherm of the transferring ion, semi-infinite mass transfer regime, and phenomenological second-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shi C, Anson CF (1998) A simple method for examining the electrochemistry of metalloporphyrins and other hydrophobic reactants in thin layers of organic solvents interposed between graphite electrodes and aqueous solutions. Anal Chem 70:3114–3118

    Article  CAS  Google Scholar 

  2. Shi C, Anson CF (1998) Simple electrochemical procedure for measuring the rates of electron transfer across liquid/liquid interfaces formed by coating graphite electrodes with thin layers of nitrobenzene. J Phys Chem B 102:9850–9854

    Article  CAS  Google Scholar 

  3. Deng H, Huang X, Wang L, Tang A (2009) Estimation of the kinetics of anion transfer across the liquid/liquid interface, by means of Fourier transformed square-wave voltammetry. Electrochem Commun 11:1333–1336

    Article  CAS  Google Scholar 

  4. Deng H, Huang X, Wang L (2010) A simultaneous study of kinetics and thermodynamics of anion transfer across the liquid/liquid interface by means of Fourier transformed large-amplitude square-wave voltammetry at three-phase electrode. Langmuir 26:19209–19216

    Article  CAS  Google Scholar 

  5. Molina A, Ortuno AJ, Serena C, Torralba E, Gonzales J (2010) Advances in the study of ion transfer at liquid membranes with two polarized interfaces by square wave voltammetry. Electroanalysis 22:1634–1642

    Article  CAS  Google Scholar 

  6. Ortuno AJ, Serna C, Molina A, Torralba E (2009) Ion transfer square wave voltammetry of ionic liquid cations with a solvent polymeric membrane ion sensor. Electroanalysis 21:2297–2302

    Article  CAS  Google Scholar 

  7. Zhou M, Gan S, Zhong L, Su B, Niu L (2010) Ion transfer voltammetry by a simple two polarized interfaces setup. Anal Chem 82:7857–7860

    Article  CAS  Google Scholar 

  8. Quentel F, Mirceski V, L’Her M, Stankoska K (2012) Assisted ion transfer at organic film-modified electrodes. J Phys Chem C 116:22885–22892

    Article  CAS  Google Scholar 

  9. Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Heidelberg

    Google Scholar 

  10. Vagin YM, Karyakin AA, Vuorema A, Sillanpaa M, Meadows H, Del Campo FJ, Cortina-Puig M, Bulman Page CP, Chan Y, Marken F (2010) Coupled triple phase boundary processes: liquid–liquid generator–collector electrodes. Electrochem Commun 12:455–458

    Article  CAS  Google Scholar 

  11. Scholz F, Komorsky-Lovric S, Lovric M (2000) A new access to Gibbs energies of transfer of ions across liquid|liquid interfaces and a new method to study electrochemical processes at well-defined three-phase junctions. Electrochem Commun 2:112–118

    Article  CAS  Google Scholar 

  12. Scholz F, Gulaboski R (2005) Gibbs energies of transfer of chiral anions across the interfacewater|chiral organic solvent determined with the help of three-phase electrodes. Faraday Discuss 129:169–177

    Article  CAS  Google Scholar 

  13. Bak E, Donten M, Stojek Z, Scholz F (2007) The punctured droplet electrode—a new three-phase electrode with well defined geometry. Electrochem Commun 9:386–392

    Article  CAS  Google Scholar 

  14. Quentel F, Mirceski V, L’Her M (2008) Electrochemical study of the thermodynamics and kinetics of hydrophilic ion transfers across water|n-octanol interface. J Solid State Electrochem 12:31–39

    Article  CAS  Google Scholar 

  15. Mirceski V, Quentel F, L’Her M, Elleouet C (2007) Homogeneous versus heterogeneous catalysis at electrodes modified with a thin organic layer: theoretical and experimental study under conditions of square-wave voltammetry. J Phys Chem C 111:8283–8290

    Article  CAS  Google Scholar 

  16. Barker A, Unwin PR (2000) Assessment of a recent thin-layer method for measuring the rates of electron transfer across liquid/liquid interfaces. J Phys Chem B 104:2330–2340

    Article  CAS  Google Scholar 

  17. Mirceski V, Gulaboski R, Bogeski I, Hoth M (2007) Redox chemistry of Ca-transporter 2-palmitoylhydroquinone in an artificial thin organic film membrane. J Phys Chem C 111:6068–6076

    Article  CAS  Google Scholar 

  18. Bogeski I, Gulaboski R, Kappl R, Mirceski V, Stefova M, Petreska J, Hoth M (2011) Calcium binding and transport by coenzyme Q. J Am Chem Soc 133:9293–9303

    Article  CAS  Google Scholar 

  19. Munoz AAR, Banks EC, Davies JT, Angnes L, Compton GR (2006) The electrochemistry of tetraphenyl porphyrin iron(III) within immobilized droplets supported on platinum electrodes. Electroanalysis 18:649–654

    Article  CAS  Google Scholar 

  20. Mirceski V, Gulaboski R (2006) Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid–liquid interface of a thin-film electrode. J Phys Chem B 110:2812–2820

    Article  CAS  Google Scholar 

  21. Mirceski V, Aleksovska A, Pejova B, Ivanovski V, Mitrova B, Mitreska N, Gulaboski R (2014) Thiol anchoring and catalysis of gold nanoparticles at the liquid interface of thin-organic film-modified electrodes. Electrochem Commun 39:5–8

    Article  CAS  Google Scholar 

  22. Vagin YM, Trashin AS, Ozkan ZS, Karpachova PG, Karyakin AA (2005) Electroactivity of redox-inactive proteins at liquid|liquid interface. J Electroanal Chem 584:110–116

    Article  CAS  Google Scholar 

  23. Vagin YM, Trashin AS, Karpachova PG, Klyachko LN, Karyakin AA (2008) Protein extracting electrodes: insights in the mechanism. J Electroanal Chem 623:68–74

    Article  CAS  Google Scholar 

  24. Quentel F, Mirceski V, L’Her M (2005) Kinetics of anion transfer across the liquid|liquid interface of a thin organic film modified electrode, studied by means of square-wave voltammetry. Anal Chem 77:1940–1949

    Article  CAS  Google Scholar 

  25. Quentel F, Mirceski V, L’Her M, Spasovski F, Gacina M (2007) Electrochemical study of hydrophilic ion transfers across cholesterol modified water–nitrobenzene interface by means of thin film electrodes. Electrochem Commun 9:2489–2495

    Article  CAS  Google Scholar 

  26. Vagin YM, Malyh VE, Larionova IN, Karyakin AA (2003) Spontaneous and facilitated micelles formation at liquid/liquid interface: towards amperometric detection of redox inactive proteins. Electrochem Commun 5:329–333

    Article  CAS  Google Scholar 

  27. Herzog G, Kam V, Arrigan WMD (2008) Electrochemical behaviour of haemoglobin at the liquid/liquid interface. Electrochim Acta 53:7204–7209

    Article  CAS  Google Scholar 

  28. Kivlehan F, Lanyon HY, Arrigan WMD (2008) Electrochemical study of insulin at the polarized liquid–liquid interface. Langmuir 24:9876–9882

    Article  CAS  Google Scholar 

  29. Herzog G, Moujahid W, Strutwolf J, Arrigan WMD (2009) Interactions of proteins with small ionised molecules: electrochemical adsorption and facilitated ion transfer voltammetry of haemoglobin at the liquid|liquid interface. Analyst 134:1608–1613

    Article  CAS  Google Scholar 

  30. Scanlon DM, Jennings E, Arrigan WMD (2009) Electrochemical behaviour of hen-egg-white lysozyme at the polarised water/1,2-dichloroethane interface. Phys Chem Chem Phys 11:2272–2280

    Article  CAS  Google Scholar 

  31. Scanlon DM, Strutwolf J, Arrigan WMD (2010) Voltammetric behaviour of biological macromolecules at arrays of aqueous|organogel micro-interfaces. Phys Chem Chem Phys 12:10040–10047

    Article  CAS  Google Scholar 

  32. Alvarez de Eulate E, Arrigan WMD (2012) Adsorptive stripping voltammetry of hen-egg-white-lysozyme via adsorption–desorption at an array of liquid–liquid microinterfaces. Anal Chem 84:2505–2511

    Article  CAS  Google Scholar 

  33. Collins JC, Lyons C, Strutwolf J, Arrigan WMD (2010) Serum-protein effects on the detection of the β-blocker propranolol by ion-transfer voltammetry at a micro-ITIES array. Talanta 80:1993–1998

    Article  CAS  Google Scholar 

  34. Imai Y, Sugihara T, Osakai T (2012) Electron transfer mechanism of cytochrome c at the oil/water interface as a biomembrane model. J Phys Chem B 116:585–592

    Article  CAS  Google Scholar 

  35. Georganopoulou DG, Caruana DJ, Strutwolf J, Williams DE (2000) Electron transfer mediated by glucose oxidase at the liquid/liquid interface. Faraday Discuss 116:109–118

    Article  CAS  Google Scholar 

  36. Sugihara T, Hotta H, Osakai T (2004) Electrochemical control of glucose oxidase-catalyzed redox reaction using an oil/water interface. Phys Chem Chem Phys 6:3563–3568

    Article  CAS  Google Scholar 

  37. Georganopoulou GD, Williams ED, Pereira MC, Silva F, Su TJ, Lu RJ (2003) Adsorption of glucose oxidase at organic-aqueous and air-aqueous interfaces. Langmuir 19:4977–4984

    Article  CAS  Google Scholar 

  38. Palanisamy S, Vilian ETA, Chen S (2012) Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor. Int J Electrochem Sci 7:2153–2163

    CAS  Google Scholar 

  39. Norouzi P, Faridbod F, Larijani B, Ganjali RM (2010) Glucose biosensor based on MWCNTS-gold nanoparticles in a nafion film on the glassy carbon electrode using flow injection FFT continuous cyclic voltammetry. Int J Electrochem Sci 5:1213–1224

    CAS  Google Scholar 

  40. Yokoyama K, Kayanuma Y (1998) Cyclic voltammetric simulation for electrochemically mediated enzyme reaction and determination of enzyme kinetic constants. Anal Chem 70:3368–3376

    Article  CAS  Google Scholar 

  41. Ragupathy D, Gopalan IA, Lee K (2009) Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan–ionic liquid matrix towards improved performance for a glucose sensor. Electrochem Commun 11:397–401

    Article  CAS  Google Scholar 

  42. Gulaboski R, Mirceski V, Pereira MC, Cordeiro SDN, Silva AF, Quentel F, L’Her M, Lovric M (2006) A comparative study of the anion transfer kinetics across a water/nitrobenzene interface by means of electrochemical impedance spectroscopy and square-wave voltammetry at thin organic film-modified electrodes. Langmuir 22:3404–3412

    Article  CAS  Google Scholar 

  43. Kim K, Kim C, Byun Y (2001) Preparation of a dipalmitoylphosphatidylcholine/cholesterol Langmuir–Blodgett monolayer that suppresses protein adsorption. Langmuir 17:5066–5070

    Article  CAS  Google Scholar 

  44. Hauptman N, Vesel A, Ivanovski V, Klanjšek GM (2012) Electrical conductivity of carbon black pigments. Dyes Pigments 95:1–7

    Article  CAS  Google Scholar 

  45. Bokobza L, Bruneel JL, Couzi M (2014) Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer grapheme and multiwall carbon nanotubes) and of some of their elastomeric composites. Vib Spectrosc 74:57–63

    Article  CAS  Google Scholar 

  46. Green JHS, Kynaston W, Lindsey AS (1961) The vibrational spectra of benzene derivatives—I: nitrobenzene, the benzoate ion, alkali metal benzoates and salicylates. Spectrochim Acta 17:486–502

    Article  CAS  Google Scholar 

  47. Mirceski V, Gulaboski R, Lovric M, Bogeski I, Kappl R, Hoth M (2013) Square-wave voltammetry: a review on the recent progress. Electroanalysis 25:2411–2422

    Article  CAS  Google Scholar 

  48. Mirceski V, Lovric KŠ, Lovric M (2007) Square-wave voltammetry. In: Scholz F (ed) Theory and application. Springer, Heidelberg

    Google Scholar 

  49. Nicholson RS, Olmstead ML (1972) In: Mattson SJ, Mark BH, Macdonald CH (eds) Electrochemistry: calculations simulation and instrumentation, vol 2. Marcel Dekker, New York

    Google Scholar 

  50. Mirceski V, Quentel F, L’Her M, Scholz F (2006) Studying the coupled electron–ion transfer reaction at a thin film-modified electrode by means of square-wave voltammetry. J Electroanal Chem 586:86–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

VM and RG acknowledge Alexander von Humboldt foundation for the financial support from the Research Group Linkage Programme 3.4-Fokoop-DEU/1128670, as well as the support of DAAD foundation through multilateral project “International Masters and Postgraduate Programme in Materials Science and Catalysis” (MatCatNet). VM also acknowledges with gratitude the support through the COST Action CM1302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Mirceski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirceski, V., Mitrova, B., Ivanovski, V. et al. Studying the ion transfer across liquid interface of thin organic-film-modified electrodes in the presence of glucose oxidase. J Solid State Electrochem 19, 2331–2342 (2015). https://doi.org/10.1007/s10008-015-2863-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2863-2

Keywords

Navigation