Skip to main content
Log in

Electrochemical study of the thermodynamics and kinetics of hydrophilic ion transfers across water | n-octanol interface

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Thermodynamics and kinetics of hydrophilic ion transfers across water|n-octanol (W|OCT) interface have been electrochemically studied by means of novel three-phase and thin-film electrodes. Three-phase electrodes used for thermodynamics measurements comprise edge plane pyrolytic graphite, the surface of which was partly modified with an ultrathin film of OCT, containing hydrophobic lutetium bis(tetra-tert-butylphthalocyaninato) (Lu[tBu4Pc]2) as a redox probe. The transfers of anions and cations from W to OCT were electrochemically driven by reversible redox transformations of Lu[tBu4Pc]2 to chemically stable lipophilic monovalent cation \({\left( {{\text{Lu}}{\left[ {t{\text{Bu}}_{4} {\text{Pc}}} \right]}^{ + }_{2} } \right)}\) and anion \( {\left( {{\text{Lu}}{\left[ {t{\text{Bu}}_{{\text{4}}} {\text{Pc}}} \right]}^{{\,\, - }}_{2} } \right)} \), respectively. Upon reduction of Lu[tBu4Pc]2, the transfers of alkali metal cations from W to OCT have been studied for the first time, enabling estimation of their Gibbs transfer energies. For kinetic measurements, a thin-film electrode configuration has been used, consisting of the same electrode covered completely with a thin layer of OCT that contained the redox probe and a suitable electrolyte. Combining the fast and sensitive square-wave voltammetry with thin-film electrodes, the kinetics of \( {\text{ClO}}^{{\,\, - }}_{4} \), \( {\text{NO}}^{{\,\,{\text{ - }}}}_{{\text{3}}} \), and Cl transfers have been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reymond F (2001) In: Volkov AG (ed) Liquid interfaces in chemical, biochemical and pharmaceutical applications. Marcel Dekker, New York, pp 733

    Google Scholar 

  2. Zhao YH, Abraham MH (2005) J Org Chem 70:2633

    Article  CAS  Google Scholar 

  3. Leo A, Hansch C, Elkins D (1971) Chem Rev 71:525

    Article  CAS  Google Scholar 

  4. Girault HH, Schiffrin DJ (1989) In: Bard AJ (ed) Electroanalytical chemistry, vol 15. Marcel Dekker, New York, pp 1–141

    Google Scholar 

  5. Gulaboski R, Mirčeski V, Scholz F (2002) Electrochem Commun 4:277

    Article  CAS  Google Scholar 

  6. Scholz F, Komorsky-Lovrić Š, Lovrić M (2000) Electrochem Commun 2:112

    Article  CAS  Google Scholar 

  7. Komorsky-Lovrić Š, Riedl K, Gulaboski R, Mirčeski V, Scholz F (2002) Langmuir 18:8000

    Article  Google Scholar 

  8. Gulaboski R, Galland A, Bouchard G, Caban K, Kretschmer A, Carrupt P, Stojek Z, Girault HH, Scholz F (2004) J Phys Chem B 108:4565

    Article  CAS  Google Scholar 

  9. Bouchard G, Galland A, Carrupt P-A, Gulaboski R, Mirčeski V, Scholz F, Girault HH (2003) Phys Chem Chem Phys 5:3748

    Article  CAS  Google Scholar 

  10. Scholz F (2006) Annu Rep Prog Chem C 102:43

    Article  CAS  Google Scholar 

  11. Scholz F, Gulaboski R (2005) Faraday Discuss 129:169

    Article  CAS  Google Scholar 

  12. Quentel F, Mirčeski V, L’Her M (2005) J Phys Chem B 109:1262

    Article  CAS  Google Scholar 

  13. Quentel F, Mirčeski V, L’Her M, Mladenov M, Scholz F, Elleouet C (2005) J Phys Chem B 109:13228

    Article  CAS  Google Scholar 

  14. Quentel F, Mirčeski V, L’Her M (2005) Anal Chem 77:1939

    Article  Google Scholar 

  15. Mirčeski V, Quentel F, L’Her M, Pondaven A (2005) Electrochem Commun 7:1122

    Article  Google Scholar 

  16. Gulaboski R, Mirčeski V, Pereira CM, Cordeiro MNDS, Silva AF, Quentel F, L’Her M, Lovric M (2006) Langmuir 22:3404

    Article  CAS  Google Scholar 

  17. Pondaven A, Cozien Y, L’Her M (1992) New J Chem 16:711

    CAS  Google Scholar 

  18. L’Her M, Pondaven A (2003) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 16, phtalocyanines: spectroscopic and electrochemical characterization. Academic Press, pp 177–170

  19. Scholz F, Gulaboski R, Caban K (2003) Electrochem Commun 5:929

    Article  CAS  Google Scholar 

  20. Lovrić M (2002) In: Scholz F (ed) Electroanalytical methods, guide to experiments and applications. Springer, Berlin Heidelberg New York, pp 111–133

    Google Scholar 

  21. De Ligny CL, Alfenaar M, Van Der Veen NG (1968) Rec Trav Chim Pays-Bas 87:585

    Google Scholar 

  22. Marcus Y (1997) Ion properties. Marcel Dekker, New York

    Google Scholar 

  23. Osakai T, Ogata A, Ebina K (1997) J Phys Chem B 101:8341

    Article  CAS  Google Scholar 

  24. Mirčeski V (2004) J Phys Chem B 108:13719

    Article  Google Scholar 

  25. Mirčeski V, Gulaboski R, Scholz F (2004) J Electroanal Chem 566:351

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the framework of French–Macedonian Integrated Action (Integrafm 2006) for a financial support. V. Mirčeski also acknowledges the financial support of A. V. Humboldt-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Mirčeski.

Additional information

Dedicated to Professor Dr. Yakov I. Tur’yan on the occasion of his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quentel, F., Mirčeski, V. & L’Her, M. Electrochemical study of the thermodynamics and kinetics of hydrophilic ion transfers across water | n-octanol interface. J Solid State Electrochem 12, 31–39 (2008). https://doi.org/10.1007/s10008-007-0363-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0363-8

Keywords

Navigation