Skip to main content
Log in

Electrochemical degradation of tetracycline in artificial urine medium

  • ORIGINAL ARTICLE
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical degradation of tetracycline hydrochloride (TeC) was comparatively investigated in artificial urine and chloride-containing media using a one-compartment filter-press flow cell composed of a Ti/Ru0.3Ti0.7O2 dimensionally stable anode. The effect of the current density (10–40 mA cm−2) on the removal levels attained for TeC and total organic carbon (TOC) (in both media), as well as for urea and creatinine in artificial urine medium, was assessed. The TeC removal rate in the artificial urine medium was much lower than in chloride-containing medium, probably due to the higher consumption of the electrogenerated active chlorine species by the urea and creatinine in the artificial urine medium. Moreover, the obtained removal levels for the urea and creatinine were negligible at current densities lower than 30 mA cm−2. As TOC abatement was also very small, it is possible that TeC oxidation leads to intermediate compounds. Thus, if current densities less than 20 mA cm−2 are applied, TeC can be selectively removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nogrady T, Weaver DF (2005) Medicinal chemistry: a molecular and biochemical approach, 3rd edn. Oxford University Press Inc., New York

    Google Scholar 

  2. Korolkovas A, Burckhalter JH (1982) Química farmacêutica. Guanabara Dois S.A, Rio de Janeiro

    Google Scholar 

  3. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  4. Mitema ES, Kikuvi GM, Wegener HC, Stohr K (2001) An assessment of antimicrobial consumption in food producing animals in Kenya. J Vet Pharmacol Ther 24:385–390

    Article  CAS  Google Scholar 

  5. Charest MG, Lerner CD, Brubaker JD, Siegel DR, Myers AG (2005) A convergent enantioselective route to structurally diverse 6-deoxytetracycline antibiotics. Science 308:395–398

    Article  CAS  Google Scholar 

  6. Nelson ML, Levy SB (2011) The history of the tetracyclines. Ann NY Acad Sci 124:17–32

    Article  Google Scholar 

  7. Cunha BA, Garabedian-Buffalo SM (1990) Tetracyclines in urology: current concepts. Urology 36:548–556

    Article  CAS  Google Scholar 

  8. Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279:996–997

    Article  CAS  Google Scholar 

  9. Betteridge T, Merlino J, Natoli J, Cheong EY, Gottlieb T, Stokes HW (2013) Plasmids and bacterial strains mediating multidrug-resistant hospital-acquired infections are coresidents of the hospital environment. Microb Drug Resist 19:104–109

    Article  CAS  Google Scholar 

  10. Du L, Liu W (2012) Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron Sustain Dev 32:309–327

    Article  CAS  Google Scholar 

  11. Brigante M, Schulz PC (2012) Adsorption of the antibiotic minocycline on cerium(IV) oxide: effect of pH, ionic strength and temperature. Micropor Mesopor Mater 156:138–144

    Article  CAS  Google Scholar 

  12. Huet AC, Charlier C, Singh G, Godefroy SB, Leivo J, Vehniäinen M, Nielen MW, Weigel S, Delahaut P (2008) Development of an optical surface plasmon resonance biosensor assay for (fluoro)quinolones in egg, fish, and poultry meat. Anal Chim Acta 623:195–203

    Article  CAS  Google Scholar 

  13. Allison JRD (1985) Antibiotic residues in milk. Brit Vet J 141:9–16

    Article  CAS  Google Scholar 

  14. Wen X, Jia Y, Li J (2010) Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. J Hazar Mater 177:924–928

    Article  CAS  Google Scholar 

  15. Prado N, Ochoa J, Amrane A (2009) Biodegradation by activated sludge and toxicity of tetracycline into a semi-industrial membrane bioreactor. Bioresour Technol 100:3769–3774

    Article  CAS  Google Scholar 

  16. Liu S, X-r Z, H-y S, R-p L, Y-f F, Y-p H (2013) The degradation of tetracycline in a photo-electro-Fenton system. Chem Eng J 231:441–448

    Article  CAS  Google Scholar 

  17. Homem V, Alves A, Santos L (2013) Microwave-assisted Fenton’s oxidation of amoxicillin. Chem Eng J 220:35–44

    Article  CAS  Google Scholar 

  18. El-Ghenymy A, Oturan N, Oturan MA, Garrido JA, Cabot PL, Centellas F, Rodríguez RM, Brillas E (2013) Comparative electro-Fenton and UVA photoelectro-Fenton degradation of the antibiotic sulfanilamide using a stirred BDD/air-diffusion tank reactor. Chem Eng J 234:115–123

    Article  CAS  Google Scholar 

  19. Orbeci C, Untea I, Nechifor G, Segneanu AE, Craciun ME (2014) Effect of a modified photo-Fenton procedure on the oxidative degradation of antibiotics in aqueous solutions. Sep Purif Technol 122:290–296

    Article  CAS  Google Scholar 

  20. Rajeshwar K, Ibanez JG, Swain GM (1994) Electrochemistry and the environment. J Appl Electrochem 24:1077–1091

    Article  CAS  Google Scholar 

  21. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862

    Article  CAS  Google Scholar 

  22. Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan MA (2012) Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere 87:614–620

    Article  CAS  Google Scholar 

  23. Zhang H, Liu F, Wu X, Zhang J, Zhang D (2009) Degradation of tetracycline in aqueous medium by electrochemical method. Asia‐Pac J Chem Eng 4:568–573

    CAS  Google Scholar 

  24. Turro E, Giannis A, Cossu R, Gidarakos E, Mantzavinos D, Katsaounis A (2012) Reprint of: electrochemical oxidation of stabilized landfill leachate on DSA electrodes. J Hazar Mater 207–208:73–78

    Article  Google Scholar 

  25. Scialdone O, Randazzo S, Galia A, Silvestri G (2009) Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl. Water Res 43:2260–2272

    Article  CAS  Google Scholar 

  26. Rodríguez FA, Rivero EP, Lartundo-Rojas L, González I (2014) Preparation and characterization of Sb2O5-doped Ti/RuO2-ZrO2 for dye decolorization by means of active chlorine. J Solid State Electrochem 18:3153–3162

    Article  Google Scholar 

  27. Malpass GRP, Miwa DW, Santos RL, Vieira EM, Motheo AJ (2012) Unexpected toxicity decrease during photoelectrochemical degradation of atrazine with NaCl. Environ Chem Lett 10:177–182

    Article  CAS  Google Scholar 

  28. Fornazari ALT, Malpass GRP, Miwa DW, Motheo AJ (2012) Application of electrochemical degradation of wastewater composed of mixtures of phenol-formaldehyde. Water Air Soil Poll 223:4895–4904

    Article  CAS  Google Scholar 

  29. Kitazono Y, Ihara I, Yoshida G, Toyoda K, Umetsu K (2012) Selective degradation of tetracycline antibiotics present in raw milk by electrochemical method. J Hazar Mater 243:112–116

    Article  CAS  Google Scholar 

  30. Laube N, Mohr B, Hesse A (2001) Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines. J Cryst Growth 233:367–374

    Article  CAS  Google Scholar 

  31. Malpass GRP, Miwa DW, Mortari DA, Machado SAS, Motheo AJ (2007) Decolorization of real textile waste using electrochemical techniques: effect of the chloride concentration. Water Res 41:2969–2977

    Article  CAS  Google Scholar 

  32. Malpass GRP, Miwa DW, Machado SAS, Motheo AJ (2008) Decolourisation of real textile waste using electrochemical techniques: effect of electrode composition. J Hazar Mater 156:170–177

    Article  CAS  Google Scholar 

  33. Gomes L, Miwa DW, Malpass GRP, Motheo AJ (2011) Electrochemical degradation of the dye reactive orange 16 using electrochemical flow-cell. J Braz Chem Soc 22:1299–1306

    Article  CAS  Google Scholar 

  34. Falcó PC, Genaro LAT, Lloret SM, Gomez FB, Cabeza AS, Legua CM (2001) Creatinine determination in urine samples by batchwise kinetic procedure and flow injection analysis using the Jaffé reaction: chemometric study. Talanta 55:1079–1089

    Article  Google Scholar 

  35. Knorst MT, Neubert R, Wohlrab W (1997) Analytical methods for measuring urea in pharmaceutical formulations. J Pharm Biomed Anal 15:1627–1632

    Article  CAS  Google Scholar 

  36. Rossi A, Alves VA, Da Silva LA, Oliveira MA, Assis DOS, Santos FA, De Miranda RRS (2009) Electrooxidation and inhibition of the antibacterial activity of oxytetracycline hydrochloride using a RuO2 electrode. J Appl Electrochem 39:329–337

    Article  CAS  Google Scholar 

  37. Cheng CY, Kelsall GH (2007) Models of Hypochlorite production in electrochemical reactors with plate and porous anodes. J Appl Electrochem 37:1203–1217

    Article  CAS  Google Scholar 

  38. Cañizares P, García-Gómez J, De Marcos IF, Rodrigo MA, Lobato J (2006) Measurement of mass-transfer coefficient by an electrochemical technique. J Chem Educ 83:1204–1207

    Article  Google Scholar 

  39. Deborde M, von Gunten U (2008) Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: a critical review. Water Res 42:13–51

    Article  CAS  Google Scholar 

  40. Wang P, He Y-L, Huang C-H (2011) Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine. Water Res 45:1838–1846

    Article  CAS  Google Scholar 

  41. Rocha J, Solano A, Fernandes N, Silva D, Peralta-Hernandez J, Martínez-Huitle CA (2012) Electrochemical degradation of Remazol Red BR and Novacron Blue C-D dyes using diamond electrode. Electrocatalysis 3:1–12

    Article  CAS  Google Scholar 

  42. Brigante M, Schulz PC (2011) Remotion of the antibiotic tetracycline by titania and titania–silica composed materials. J Hazar Mater 192:1597–1608

    Article  CAS  Google Scholar 

  43. Gu C, Karthikeyan KG, Sibley SD, Pedersen JA (2007) Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66:1494–1501

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian research funding agencies, the National Council for Scientific and Technological Development (CNPq), and the Federal Agency for the Support and Improvement of Higher Education (CAPES) for the financial support. Saima Gul thanks the TWAS-CNPq Fellowship Programme for Postgraduate Research grant. De Nora do Brazil is also gratefully acknowledged for supplying the DSA® samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur J. Motheo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra, K.N., Gul, S., Aquino, J.M. et al. Electrochemical degradation of tetracycline in artificial urine medium. J Solid State Electrochem 20, 1001–1009 (2016). https://doi.org/10.1007/s10008-015-2833-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2833-8

Keywords

Navigation