Skip to main content
Log in

Novel cetyltrimethylammonium bromide-functionalized bucky gel nanocomposite for enhancing the electrochemistry of haemoglobin

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphitized multiwalled carbon nanotubes (GMWNTs) were ground with 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) containing dissolved cetyltrimethylammonium bromide (CTAB), and a CTAB-[Bmim]PF6-GMWNT nanocomposite was obtained. The nanocomposite had a regular arrangement, and no agglomeration was observed, in contrast with the case of a bucky gel ([Bmim]PF6-GMWNTs). CTAB-[Bmim]PF6-GMWNT showed significantly lower electron impedance toward an [Fe(CN)6]3−/4− anion probe, compared with [Bmim]PF6-GMWNT, and it was shown (using Fourier transform infrared spectroscopy and UV–visible spectroscopy) that CTAB-[Bmim]PF6-GMWNT acted as a biocompatible matrix for the self-assembly of haemoglobin molecules. Furthermore, the faradaic current (31.77 μA) resulting from the direct electron transfer in self-assembled haemoglobin on a CTAB-[Bmim]PF6-GMWNT-modified glass carbon electrode (GCE) was ~35.5 times larger than that measured for haemoglobin on a [Bmim]PF6-GMWNT-modified GCE (0.8941 μA). The haemoglobin anchored on the CTAB-[Bmim]PF6-GMWNTs/GCE showed a more sensitive response to hydrogen peroxide (H2O2) compared with other electrodes reported in the literature. The CTAB-functionalized bucky gel nanocomposite was biocompatible and showed beneficial characteristics that could be useful for applications in biological engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim JH, Jin JH, Lee JY, Park EJ, Min NK (2012) Bioconjugate Chem 23:2078–2086

    Article  CAS  Google Scholar 

  2. Sakellariou G, Priftis D, Baskaran D (2013) Chem Soc Rev 42:677–704

    Article  CAS  Google Scholar 

  3. Liu XM, Huang ZD, Oh SW, Zhang B, Ma PC, Yuen MMF, Kim JK (2012) Compos Sci Technol 72:121–144

    Article  CAS  Google Scholar 

  4. Gao C, Guo Z, Liu JH, Huang XJ (2012) Nanoscale 4:1948–1963

    Article  CAS  Google Scholar 

  5. Lindsey NP, Matthew TM, Shelley DM (2012) Electroanalysis 24:1011–1018

    Article  Google Scholar 

  6. Chiara B, Maria AHC, Maurizio P, Salvatore C (2011) Adv Funct Mater 21:153–157

    Article  Google Scholar 

  7. Baibarac M, Baltog I, Lefrant S (2011) Curr Org Chem 15:1160–1196

    Article  CAS  Google Scholar 

  8. Adeli M, Soleyman R, Beiranvand Z, Madani F (2013) Chem Soc Rev 42:5231–5256

    Article  CAS  Google Scholar 

  9. Wang J, Liu Y, Zhang WD (2011) Prog Chem 23:1583–1590

    CAS  Google Scholar 

  10. Wu BH, Kuang YJ, Zhang XH, Chen JH (2011) Nano Today 6:75–90

    Article  CAS  Google Scholar 

  11. Hwang JY, Shin US, Jang WC, Hyun JK, Wall IB, Kim HW (2013) Nanoscale 5:487–497

    Article  CAS  Google Scholar 

  12. Jacobs CB, Peairs MJ, Venton BJ (2010) Anal Chim Acta 662:105–127

    Article  CAS  Google Scholar 

  13. Tunckol M, Durand J, Serp P (2012) Carbon 50:4303–4334

    Article  CAS  Google Scholar 

  14. Lee J, Aida T (2011) Chem Commun 47:6757–6762

    Article  CAS  Google Scholar 

  15. Polo-Luque ML, Simonet BM, Valcarcel M (2013) Trend Anal Chem 47:99–110

    Article  CAS  Google Scholar 

  16. Zhao Q, Zhan DP, Ma HY, Zhang MQ, Zhao YF, Jing P, Zhu ZW, Wan XH, Shao YH, Zhuang QK (2005) Front Biosci 10:326–334

    Article  CAS  Google Scholar 

  17. Wei W, Jin HH, Zhao GC (2009) Microchim Acta 164:167–171

    Article  CAS  Google Scholar 

  18. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aidal T (2003) Science 300:2072–2074

    Article  CAS  Google Scholar 

  19. Bai L, Wen D, Yin JY, Deng L, Zhu CZ, Dong SJ (2012) Talanta 91:110–115

    Article  CAS  Google Scholar 

  20. Li SW, Dong ZP, Yang HL, Guo SJ, Gou GL, Ren R, Zhu ZJ, Jin J, Ma JT (2013) Chem-Euro J 19:2384–2391

    Article  CAS  Google Scholar 

  21. Wang JJ, Yin GP, Shao YY, Wang ZB, Gao YZ (2008) J Chem Phys C 112:5784–5789

    Article  CAS  Google Scholar 

  22. Lu Q, Hu CG, Cui R, Hu SS (2007) J Phys Chem B 111:9808–9813

    Article  CAS  Google Scholar 

  23. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  24. Wang S-F, Chen T, Zhang Z-L, Pang D-W, Wong K-Y (2007) Electrochem Commun 9:1709–1714

    Article  CAS  Google Scholar 

  25. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  26. Cai CX, Chen J (2004) Anal Biochem 325:285–292

    Article  CAS  Google Scholar 

  27. Li JW, Liu LH, Yan R, Xiao MY, Liu LQ, Zhao FQ, Zeng BZ (2008) Electrochim Acta 53:4591–4598

    Article  CAS  Google Scholar 

  28. Niloofar M, Jahan BR, Afsaneh S, Reza O (2012) Electroanalysis 24:1386–1393

    Article  Google Scholar 

  29. Zhu ZH, Qu LN, Li X, Zeng Y, Sun W, Huang XT (2010) Electrochim Acta 55:5959–5965

    Article  CAS  Google Scholar 

  30. Kumar AS, Gayathri P, Barathi P, Vijayaraghavan R (2012) J Phys Chem C 116:23692–23703

    Article  Google Scholar 

  31. Wang Z, Yi J, Yang S (2013) Sens Actuat B 176:211–216

    Article  CAS  Google Scholar 

  32. Lia J, Mei H, Zheng W, Pan P, Sun XJ, Li F, Guo F, Zhou HM, Ma JY, Xu XX, Zheng YF (2014) Colloid Surfac B 118:77–82

    Article  Google Scholar 

  33. Li YC, Li YJ, Yang YY (2012) J Solid State Electrochem 16:1133–1140

    Article  CAS  Google Scholar 

  34. Zhao Y, Fan LZ, Ren JL, Hong B (2014) J Solid State Electrochem 18:1099–1109

    Article  CAS  Google Scholar 

  35. Sun W, Cao LL, Deng Y, Gong SX, Shi F, Li GN, Sun ZF (2013) Anal Chim Acta 781:41–47

    Article  CAS  Google Scholar 

  36. Zhang Y, Zheng JB (2011) Chin J Chem 29:685–690

    Article  CAS  Google Scholar 

  37. Wang MZ, Zheng JB (2012) J Electrochem Soc 159:F150–F156

    Article  CAS  Google Scholar 

  38. Sun W, Dong LF, Deng Y, Yu JH, Wang WC, Zhu QQ (2014) Mat Sci Eng C 39:86–91

    Article  CAS  Google Scholar 

  39. Wang YQ, Zhang HJ, Yao D, Pu JJ, Zhang Y, Gao XR, Sun YM (2013) J Solid State Electrochem 17:881–887

    Article  CAS  Google Scholar 

  40. Wang L, Qi W, Su RX, He ZM (2013) J Solid State Electrochem 17:2595–2602

    Article  CAS  Google Scholar 

  41. Zhang S, Zhang DW, Sheng QL, Zheng JB (2014) J Solid State Electrochem 18:2193–2200

    Article  CAS  Google Scholar 

  42. Wen W, Chen W, Ren QQ, Hu XY, Xiong HY, Zhang XH, Wang SF, Zhao YD (2012) Sens Actuat B 166:444–450

    Article  Google Scholar 

  43. Sun JY, Huang KJ, Zhao SF, Fan Y, Wu ZW (2011) Bioelectrochemistry 82:125–130

    Article  CAS  Google Scholar 

  44. Feng QL, Liu KP, Fu JJ, Zhang YZ, Zheng ZX, Wang CM, Du YL, Ye WC (2012) Electrochim Acta 60:304–308

    Article  CAS  Google Scholar 

  45. Zhang LL, Han GQ, Liu Y, Tang J, Tang WH (2014) Sens Actuat B 197:164–171

    Article  CAS  Google Scholar 

  46. Kamin RA, Wilson GS (1980) Anal Chem 52:1198–1205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate financial support from the Foundation of the State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS1205), the Natural Science Foundation of Zhejiang Province (LQ12B05005), the Program for Science and Technology of Zhejiang Province (2013C32038), the Science and Technology Innovation Program of Zhejiang Province’s University Student (2014R417005). We are grateful for the help of Professor Jun-Jie Zhu of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Zhi Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, ZZ., Li, L., Zhou, SM. et al. Novel cetyltrimethylammonium bromide-functionalized bucky gel nanocomposite for enhancing the electrochemistry of haemoglobin. J Solid State Electrochem 19, 1551–1557 (2015). https://doi.org/10.1007/s10008-015-2769-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2769-z

Keywords

Navigation