Skip to main content
Log in

Enhanced electrochemical performance of nano-MnO2 modified by Ni(OH)2 as electrode material for supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ni(OH)2 was compounded to MnO2 in an easy liquid phase process to improve the diffusion process of the electrode. The as-prepared materials were a mixture of amorphous and nanocrystalline with aggregated nanoparticles forming slit-shaped pore structures. The composite has higher specific surface area and smaller pore volume compared with pristine MnO2. Electrochemical properties of the electrodes were carried out with cyclic voltammetry (CV), galvanostatic charge–discharge tests, and electrochemical impedance spectroscopy (EIS). The MnO2/Ni(OH)2 composites exhibited enhanced electrochemical properties than that of pristine MnO2. Remarkably, the composite which contains 3 % Ni(OH)2 exerted the best discharged specific of 408 F g−1 under 0.2 A g−1, much higher than 247 F g−1 of pristine MnO2 at the same current density. Better rate capability and cycling stability were also realized by the same composite in comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  2. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Carbon 48:3825–3833

    Article  CAS  Google Scholar 

  3. Wang X, Wang YY, Zhao CM, Zhao YX, Yan BY, Zheng WT (2012) New J Chem 36:902–1906

    Google Scholar 

  4. Hastak RS, Sivaraman P, Potphode DD, Shashidhara K, Samui AB (2012) Electrochim Acta 59:296–303

    Article  CAS  Google Scholar 

  5. Li ZP, Wang JQ, Wang ZF, Ran HQ, Li Y, Han XX, Yang SR (2012) New J Chem 36:1490–1495

    Article  CAS  Google Scholar 

  6. Ganankan SRP, Karthikeyan K, Amaresh S, Cho SJ, Park GJ, Lee YS (2011) J Alloys Compound 509:9858–9864

    Article  Google Scholar 

  7. Zhang JT, Zhao XS (2012) Chem Soc Rev 5:818–841

    CAS  Google Scholar 

  8. Yoon SB, Yoon EH, Kim KB (2011) J Power Sources 196:10791–10797

    Article  CAS  Google Scholar 

  9. Wei W, Cui X, Chena W, Ivey GD (2011) Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  10. Wang ZY, Zhou L, Lou XW (2012) Adv Mater 24:1903–1911

    Article  CAS  Google Scholar 

  11. Lou XW, Wang Y, Yuan CL, Lee JY, Archer LA (2006) Adv Mater 18:2325–2329

    Article  CAS  Google Scholar 

  12. Jiang H, Zhao T, Ma J, Yan C, Li CZ (2011) Chem Commun 47:1264–1266

    Article  CAS  Google Scholar 

  13. Sung DY, Kim IY, Kim TW, Song MS, Hwang SJ (2011) J Phys Chem C 115:171–13179

    Google Scholar 

  14. Zhang JT, Chu W, Jiang JW, Zhao XS (2011) Nanotechnology 22:125703

    Article  Google Scholar 

  15. Song MS, Lee KM, Lee YR, Kim TW, Hwang SJ (2010) J Phys Chem C 114:22134–22140

    Article  CAS  Google Scholar 

  16. Chen YS, Hu CC (2003) Electrochem Solid-State Lett 6:A210–A213

    Article  CAS  Google Scholar 

  17. Kim H, Popov BN (2003) J Electrochem Soc 150:D56–D62

    Article  CAS  Google Scholar 

  18. Li Y, Xi HQ (2010) Ionics 16:21–25

    Article  CAS  Google Scholar 

  19. Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW (2007) Nano Lett 7:281–286

    Article  CAS  Google Scholar 

  20. Yan J, Fan ZJ, Wei T, Cheng J, Shao B, Wang K, Song LP, Zhang ML (2009) J Power Sources 94:1202–1207

    Article  Google Scholar 

  21. Rolison DR, Long RW, Lytle JC, Fischer AE, Rhodes CP, McEvoy TM, Bourga ME, Lubers AM (2009) Chem Soc Rev 38:226–252

    Article  CAS  Google Scholar 

  22. Sivakkumar SR, Ko JM, Kim DY, Kim BC, Wallace GG (2007) Electrochim Acta 52:7377–7385

    Article  CAS  Google Scholar 

  23. Liu R, Lee SB (2008) J Am Chem Soc 130:2942–2943

    Article  CAS  Google Scholar 

  24. Zhang H, Zhang X, Zhang D, Sun X, Lin H, Wang C, Ma Y (2013) J Phys Chem B 117:1616

    Article  CAS  Google Scholar 

  25. Yan J, Sun W, Wei T, Zhang Q, Fan Z, Wei F (2012) J Mater Chem 22:11494

    Article  CAS  Google Scholar 

  26. Dubal DP, Gund GS, Lokhande CD, Holze R (2013) ACS Appl Mater Inter 5:2446

    Article  CAS  Google Scholar 

  27. Tang Z, Tang CH, Gong H (2012) Adv Funct Mater 22:1272

    Article  CAS  Google Scholar 

  28. Chen H, Hu LF, Yan Y, Che RC, Chen M, Wu LM (2013) Adv Energy Mater 3:1636

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the Natural Science Foundation of Hebei Province (B2012203069) and support from the Education Department of Hebei Province on Natural Science Research Key Projects for Institution of Higher Learning (ZH2011228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjie Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Shao, G., Wang, G. et al. Enhanced electrochemical performance of nano-MnO2 modified by Ni(OH)2 as electrode material for supercapacitor. J Solid State Electrochem 18, 3173–3180 (2014). https://doi.org/10.1007/s10008-014-2553-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2553-5

Keywords

Navigation