Skip to main content
Log in

Electrochemically deposited thiophene-based polymers as protective agents for Prussian Blue thin films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A composite material based on overlapped layers of electrochemically synthesized Prussian Blue (PB) and terthiophene-derived polymer is described, aiming at enhancing the stability of the hexacyanoferrate thanks to the protective action of the polymer. Two bilayer configurations and deposition methods (for the polymer component) were tested. The morphology and electrochemical behavior in organic solvent and in aqueous solutions containing different supporting electrolytes were carried out. The best performances of electrodes modified with films of the composite material as to increased stability of PB were achieved with the potentiostatically deposited polymer covering the PB layer, in acetate buffer at pH 5.5. As for potential cycling stress, the anodic and cathodic peak currents due to PB were not decreased after 20 cycles. Conversely, PB alone displayed the anodic peak currents relevant to PB/Prussian White (PW) and PB/Berlin Green (BG) systems decreased by about 30 %. The stability to local pH increase was assessed by cyclic voltammetry after electrochemical reduction of H2O2. For example, the anodic peak currents were decreasing by 15 % and 5 % for the two PB redox systems, while for PB alone the same currents decreased by 35 % and 10 %. The response sensitivity to hydrogen peroxide was improved by 54 %, with respect to PB alone, as evaluated by chronoamperometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de Tacconi NR, Rajeshwar K, Lezna RO (2003) Metal hexacyanoferrates: electrosynthesis, in situ characterization, and applications. Chem Mater 15:3046–3062

    Article  Google Scholar 

  2. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389–407

    Article  CAS  Google Scholar 

  3. Karyakin AA (2001) Prussian Blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13:813–819

    Article  CAS  Google Scholar 

  4. Roig A, Navarro J, Garcia JJ, Vicente F (1994) Voltammetric study of the stability of deposited Prussian blue films against successive potential cycling. Electrochim Acta 39:437–442

    Article  CAS  Google Scholar 

  5. Karyakin AA, Karyakina EE, Gorton L (1999) On the mechanism of H2O2 reduction at Prussian Blue modified electrodes. Electrochem Commun 1:78–82

    Article  CAS  Google Scholar 

  6. Toyoda Y, Katoh N, Kuwabara K (2004) Dependence of redox characteristics in Prussian blue-modified electrode on pH of electrolytic solution. Mater Sci Eng B 108:271–277

    Article  Google Scholar 

  7. Jones CW (1999) Applications of hydrogen peroxide and derivatives. Royal Society of Chemistry, Cambridge

    Google Scholar 

  8. Schwake A, Ross B, Cammann K (1998) Chronoamperometric determination of hydrogen peroxide in swimming pool water using an ultramicroelectrode array. Sens Actuators B 46:242–248

    Article  CAS  Google Scholar 

  9. Corveleyn S, Vandenbossche GMR, Remon JP (1997) Near-infrared (NIR) monitoring of H2O2 vapor concentration during vapor hydrogen peroxide (VHP) sterilisation. Pharm Res 14:294–298

    Article  CAS  Google Scholar 

  10. Hsu C-L, Jang H-D, Su M-S, Chang K-S, Huang Y-S (2008) Amperometric determination of hydrogen peroxide residue in beverages using a Nafion modified palladium electrode. Eur Food Res Technol 226:809–815

    Article  CAS  Google Scholar 

  11. Wang Y, Huang J, Zhang C, Wei J, Zhou X (1998) Determination of hydrogen peroxide in rainwater by using a polyaniline film and platinum particles co-modified carbon fiber microelectrode. Electroanalysis 10:776–778

    Article  CAS  Google Scholar 

  12. Campanella L, Roversi R, Sammartino MP, Tomassetti M (1998) Hydrogen peroxide determination in pharmaceutical formulations and cosmetics using a new catalase biosensor. J Pharm Biomed Anal 18:105–116

    Article  CAS  Google Scholar 

  13. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  14. http://www.cefic.org/Documents/Other/CEFIC-H2O2-7157.pdf. Accessed 10 Mar 2010

  15. Chang Q, Zhu L, Jiang G, Tang H (2009) Sensitive fluorescent probes for determination of hydrogen peroxide and glucose based on enzyme-immobilized magnetite/silica nanoparticles. Anal Bioanal Chem 395:2377–2385

    Article  CAS  Google Scholar 

  16. Marle L, Greenway GM (2005) Determination of hydrogen peroxide in rainwater in a miniaturised analytical system. Anal Chim Acta 548:20–25

    Article  CAS  Google Scholar 

  17. Voraberger H, Ribitsch V, Janotta M, Mizaikoff B (2003) Application of mid-infrared spectroscopy: measuring hydrogen peroxide concentrations in bleaching baths. Appl Spectrosc 57:574–579

    Article  CAS  Google Scholar 

  18. Pinkernell U, Effkemann S, Karst U (1997) Simultaneous HPLC determination of peroxyacetic acid and hydrogen peroxide. Anal Chem 69:3623–3627

    Article  CAS  Google Scholar 

  19. Stephenson NA, Bell AT (2005) Quantitative analysis of hydrogen peroxide by 1H NMR spectroscopy. Anal Bioanal Chem 381:1289–1293

    Article  CAS  Google Scholar 

  20. Scandurra G, Arena A, Ciofi C, Saitta G (2013) Electrical characterization and hydrogen peroxide sensing properties of gold/Nafion:Polypyrrole/MWCNTs electrochemical devices. Sensors 13:3878–3888

    Article  CAS  Google Scholar 

  21. Onoda M, Uchiyama T, Mawatari K, Kaneko K, Nakagomi K (2006) Simple and rapid determination of hydrogen peroxide using phosphine-based fluorescent reagents with sodium tungstate dihydrate. Anal Sci 22:815–817

    Article  CAS  Google Scholar 

  22. Mignani A, Scavetta E, Tonelli D (2006) Electrodeposited glucose oxidase/anionic clay for glucose biosensors design. Anal Chim Acta 577:98–106

    Article  CAS  Google Scholar 

  23. Karyakin AA, Karyakina EE (1999) Prussian Blue-based ‘artificial peroxidase’ as a transducer for hydrogen peroxide detection. Application to biosensors. Sens Actuators B 57:268–273

    Article  CAS  Google Scholar 

  24. Guadagnini L, Maljusch A, Chen X, Neugebauer S, Tonelli D, Schuhmann W (2009) Visualization of electrocatalytic activity of microstructured metal hexacyanoferrates by means of redox competition mode of scanning electrochemical microscopy (RC-SECM). Electrochim Acta 54:3753–3758

    Article  CAS  Google Scholar 

  25. de Mattos IL, Gorton L, Ruzgas T, Karyakin AA (2000) Sensor for hydrogen peroxide based on Prussian Blue modified electrode: improvement of the operational stability. Anal Sci 16:795–798

    Article  Google Scholar 

  26. Senthil Kumar SM, Chandrasekara Pillai K (2006) Compositional changes in unusually stabilized Prussian blue by CTAB surfactant: application to electrocatalytic reduction of H2O2. Electrochem Commun 8:621–626

    Article  Google Scholar 

  27. Nossol E, Zarbin JG (2013) Electrochromic properties of carbon nanotubes/Prussian blue nanocomposite films. Sol Energy Mater Sol C 109:40–46

    Article  CAS  Google Scholar 

  28. Mortimer RJ (1995) Electrochemical responses of bilayer electrodes with Prussian blue as the ‘inner’ layer and electroactive cation-incorporated Nafion® as the ‘outer’ layer. J Electroanal Chem 397:79–86

    Article  Google Scholar 

  29. Thakur B, Savant SN (2013) Polyaniline/Prussian-Blue-based amperometric biosensor for detection of uric acid. Chem Plus Chem 78:166–174

    CAS  Google Scholar 

  30. Koncki R, Wolfbeis OS (1998) Composite films of Prussian Blue and N-substituted polypyrroles: fabrication and application to optical determination of pH. Anal Chem 70:2544–2550

    Article  CAS  Google Scholar 

  31. Lupu S, Mihailciuc C, Pigani L, Seeber R, Totir N, Zanardi C (2002) Electrochemical preparation and characterisation of bilayer films composed by Prussian Blue and conducting polymer. Electrochem Commun 4:753–758

    Article  CAS  Google Scholar 

  32. Noël V, Randriamahazaka H, Chevrot C (2000) Composite films of iron(III) hexacyanoferrate and poly(3,4-ethylenedioxythiophene): electrosynthesis and properties. J Electroanal Chem 489:46–54

    Article  Google Scholar 

  33. Lisowska-Oleksiak A, Nowak AP (2007) Metal hexacyanoferrate network synthesized inside polymer matrix for electrochemical capacitors. J Power Sources 173:829–836

    Article  CAS  Google Scholar 

  34. Lisowska-Oleksiak A, Nowak AP (2008) Impedance spectroscopy studies on hybrid materials consisting of poly(3,4-ethylenedioxythiophene) and iron, cobalt and nickel hexacyanoferrate. Solid State Ionics 179:72–78

    Article  CAS  Google Scholar 

  35. Chiu J-Y, Yu C-M, Yen M-J, Chen L-C (2009) Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes. Biosens Bioelectron 24:2015–2020

    Article  CAS  Google Scholar 

  36. Lupu S, Lakard B, Hihn J-Y, Dejeu J, Rougeot P, Lallemand S (2011) Morphological characterization and analytical application of poly(3,4-ethylenedioxythiophene)–Prussian blue composite films electrodeposited in situ on platinum electrode chips. Thin Solid Films 519:7754–7762

    Article  CAS  Google Scholar 

  37. Zhang Q, Zhang L, Li J (2008) Fabrication and electrochemical study of monodisperse and size controlled Prussian blue nanoparticles protected by biocompatible polymer. Electrochim Acta 53:3050–3055

    Article  CAS  Google Scholar 

  38. Lupu S, del Campo FJ, Muñoz FX (2010) Development of microelectrode arrays modified with inorganic–organic composite materials for dopamine electroanalysis. J Electroanal Chem 639:147–153

    Article  CAS  Google Scholar 

  39. Limachi DGB, Gonçales VR, Cintra EP, Córdoba de Torresi SI (2013) Controlling hydrophilicity and electrocatalytic properties of metallic hexacyanoferrates/conducting polymers hybrids for the detection of H2O2. Electrochim Acta 110:459–464

    Article  CAS  Google Scholar 

  40. Zanardi C, Terzi F, Seeber R (2013) Polythiophenes and polythiophene-based composites in amperometric sensing. Anal Bioanal Chem 405:509–531

    Article  CAS  Google Scholar 

  41. Dini D, Decker F, Andreani F, Salatelli E, Hapiot P (2000) A comparative study of isomeric polydialkyl terthiophenes with regular regiochemistry of substitution. Electrochemical synthesis. Polymer 41:6473–6480

    Article  CAS  Google Scholar 

  42. Pigani L, Seeber R, Terzi F, Zanardi C (2004) Influence of the nature of the supporting electrolyte on the formation of poly[4,4′-bis(butylsulphanyl)-2,2′-bithiophene] films. A role for both counter-ion and co-ion in the polymer growth and p-doping processes. J Electroanal Chem 562:231–239

    Article  CAS  Google Scholar 

  43. Mortimer RJ, Rosseinsky DR (1983) Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide. J Electroanal Chem 151:133–147

    Article  CAS  Google Scholar 

  44. Kellawi H, Rosseinsky DR (1982) Electrochemical bichromic behaviour of ferric ferrocyanide (Prussian Blue) in thin film redox processes. J Electroanal Chem 131:373–376

    Article  CAS  Google Scholar 

  45. Dass A, Mulik S, Sotiriou-Leventis C, Leventis N (2006) Protection of 2-(3-thienyl)ethanol with 3-thienylacetic acid and hard cross-linked conducting films by polymerization of the ester. Synth Met 156:966–972

    Article  CAS  Google Scholar 

  46. Mouffouk F, Brown SJ, Demetriou AM, Higgins SJ, Nichols RJ, Gamini Rajapakse RM, Reeman S (2005) Electrosynthesis and characterization of biotin-functionalized poly(terthiophene) copolymers, and their response to avidin. J Mater Chem 15:1186–1196

    Article  CAS  Google Scholar 

  47. Audebert P, Catel JM, Le Coustumer G, Duchenet V, Hapiot P (1998) Electrochemistry and polymerization mechanisms of thiophene−pyrrole−thiophene oligomers and terthiophenes. Experimental and theoretical modeling studies. J Phys Chem B 102:8661–8669

    Article  CAS  Google Scholar 

  48. Dini D, Decker F, Zotti G, Schiavon G, Zecchin S, Andreani F, Salatelli E (1999) Comparative study of isomeric polyalkylthiophenes with regular regiochemistry of substitution: characterization of electrochemical doping process. Chem Mater 11:3484–3489

    Article  CAS  Google Scholar 

  49. Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Zweite Mittheilung. Arch Exp Pathol Pharmakol 24:247–260

    Article  Google Scholar 

  50. Randriamahazaka H, Noël V, Chevrot C (1999) Nucleation and growth of poly(3,4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostatic conditions. J Electroanal Chem 472:103–111

    Article  Google Scholar 

  51. Leventis N, Chung YC (1992) Poly(3-methylthiophene)–Prussian Blue: a new composite electrochromic material. J Mater Chem 2:289–293

    Article  CAS  Google Scholar 

  52. Itaya K, Uchida I (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian Blue and its analogues. Acc Chem Res 19:162–168

    Article  CAS  Google Scholar 

  53. Doménech A, Montoya N, Scholz F (2011) Estimation of individual Gibbs energies of cation transfer employing the insertion electrochemistry of solid Prussian blue. J Electroanal Chem 657:117–122

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of Bologna for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorella Guadagnini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(TIFF 61 kb)

Fig. S2

(TIFF 73 kb)

Fig. S3

(TIFF 255 kb)

Fig. S4

(TIFF 244 kb)

Fig. S5

(TIFF 274 kb)

Fig. S6

(TIFF 242 kb)

Fig. S7

(TIFF 269 kb)

Fig. S8

(TIFF 241 kb)

Fig. S9

(TIFF 231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guadagnini, L., Salatelli, E., Kharina, A. et al. Electrochemically deposited thiophene-based polymers as protective agents for Prussian Blue thin films. J Solid State Electrochem 18, 2731–2742 (2014). https://doi.org/10.1007/s10008-014-2530-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2530-z

Keywords

Navigation