Skip to main content
Log in

Improved electrode fabrication method to enhance performance and stability of MoS2-based lithium-ion battery anode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Choice of binder and the electrode-making process play a pivotal role in the electrochemical performance of MoS2, when used as lithium-ion battery anode. In this work, MoS2 nanorods are prepared by gas phase synthesis method using molybdenum trioxide (MoO3) nanobelts and sulfur as starting materials. It has been observed that by tuning the reaction conditions, morphology and yield of the final product can be controlled. Carboxymethyl cellulose (CMC) is used as binder to fabricate the MoS2 electrode, and its electrochemical performance is tested against Li/Li+. The performance of electrode can be further improved by incorporating heat treatment to the active material and conductive carbon mixture prior to electrode fabrication. The electrochemical data shows that the optimum temperature for heat treatment is 700 °C. In the current report, we would like to elucidate a detailed study based on electrode fabrication process and their impact on the electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499

    Article  CAS  Google Scholar 

  2. Sen UK, Srakar S, Veluri PS, Singh S, Mitra S (2013) Nanosci Nanotechnol Asia 3:21–35

    Article  CAS  Google Scholar 

  3. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  4. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) Nat Mater 5:567–573

    Article  CAS  Google Scholar 

  5. Reddy MV, Yu T, Sow CH, Shen ZX, Lim CT, Rao GVS, Chowdari BVR (2007) Adv Funct Mater 17:2792–2799

    Article  CAS  Google Scholar 

  6. Chang K, Chen W (2011) ACS Nano 6:4720–4728

    Article  Google Scholar 

  7. Cao X, Shi Y, Shi W, Rui X, Yan Q, Kong J, Zhang H (2013) Small 9:3433–3438

    Article  CAS  Google Scholar 

  8. Wang Z, Chen T, Chen W, Chang K, Ma L, Huang G, Chen D, Lee JY (2013) J Mater Chem A 1:2202–2210

    Article  Google Scholar 

  9. Bindumadhavan K, Srivastava SK, Mahanty S (2013) Chem Commun 49:1823–1825

    Article  CAS  Google Scholar 

  10. Park SK, Yu SH, Woo S, Quan B, Lee DC, Kim MK, Sung YE, Piao Y (2013) Dalton Trans 42:2399–2405

    Article  CAS  Google Scholar 

  11. Chang K, Chen W, Ma L, Li H, Li H, Huang F, Xu Z, Zhangd Q, Lee JY (2011) J Mater Chem 21:6251–6257

    Article  CAS  Google Scholar 

  12. Zhou X, Wan LJ, Guo YG (2012) Nanoscale 4:5868–5871

    Article  CAS  Google Scholar 

  13. Sen UK, Mitra S (2013) ACS Appl Mater Interfaces 5:1240–1247

    Article  CAS  Google Scholar 

  14. Li J, Dahn HM, Krause LJ, Le DB, Dahn JR (2008) J Electrochem Soc 155:A812–A816

    Article  CAS  Google Scholar 

  15. Liu G, Zheng H, Kim S, Deng Y, Minor AM, Song X, Battaglia VS (2008) J Electrochem Soc 155:A887–A892

    Article  CAS  Google Scholar 

  16. Liu G, Zheng H, Simens AS, Minor AM, Song X, Battaglia VS (2007) J Electrochem Soc 154:A1129–A1134

    Article  CAS  Google Scholar 

  17. Veluri PS, Mitra S (2013) RSC Adv 3:15132–15138

    Article  CAS  Google Scholar 

  18. Wang Z, Madhavi S, Lou XW (2012) J Phys Chem C 116:12508–12513

    Article  CAS  Google Scholar 

  19. Gillot F, Boyanov S, Dupont L, Doublet ML, Morcrette M, Monconduit L, Tarascon JM (2005) Chem Mater 17:6327–6337

    Article  CAS  Google Scholar 

  20. Gu Y, Xu Y, Wang Y (2013) ACS Appl Mater Interfaces 5:801–806

    Article  CAS  Google Scholar 

  21. Wang Y, Wu J, Tang Y, Lü X, Yang C, Qin M, Huang F, Li X, Zhang X (2012) ACS Appl Mater Interfaces 4:4246–4250

    Article  CAS  Google Scholar 

  22. Liu H, Su D, Wang G, Qiao SZ (2012) J Mater Chem 22:17437–17440

    Article  CAS  Google Scholar 

  23. Bhandavat R, David L, Singh G (2012) J Phys Chem Lett 3:1523–1530

    Article  CAS  Google Scholar 

  24. Feldman Y, Wasserman E, Srolovitz DJ, Tenne R (1995) Science 267:222–225

    Article  CAS  Google Scholar 

  25. Li XL, Li YD (2003) Chem Euo J 9:2726–2731

    Article  CAS  Google Scholar 

  26. Hsu WK, Chang BH, Zhu YQ, Han WQ, Terrones H, Terrones M, Grobert N, Cheetham AK, Kroto HW, Walton DRM (2000) J Am Chem Soc 122:10155–10158

    Article  CAS  Google Scholar 

  27. Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Nano Lett 11:4168–4175

    Article  CAS  Google Scholar 

  28. Sen UK, Mitra S (2012) RSC Adv 2:11123–11131

    Article  CAS  Google Scholar 

  29. Wang M, Li G, Xu H, Qian Y, Yang J (2013) ACS Appl Mater Interfaces 5:1003–1008

    Article  CAS  Google Scholar 

  30. Shi YM, Wang Y, Wong JI, Tan AYS, Hsu CL, Li LJ, Lu YC, Yang HY (2013) Sci Rep 3:2169

    Google Scholar 

  31. Stephenson T, Li Z, Olsen B, Mitlin D (2014) Energy Environ Sci 7:209–231

    Article  CAS  Google Scholar 

  32. Ji X, Nazar LF (2010) J Mater Chem 20:9821–9826

    Article  CAS  Google Scholar 

  33. Mabuchi A, Tokumitsu K, Fujimoto H, Kasuh T (1995) J Electrochem Soc 142:1041–1046

    Article  CAS  Google Scholar 

  34. Andrews R, Jacques D, Qian D, Dickey EC (2001) Carbon 39:1681–1687

    Article  CAS  Google Scholar 

  35. Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, Terrones H, Terrones H, Dresselhaus MS (2003) Carbon 41:1941–1947

    Article  CAS  Google Scholar 

  36. Ataca C, Şahin H, Aktürk E, Ciraci S (2011) J Phys Chem C 115:3934–3941

    Article  CAS  Google Scholar 

  37. Ghorbani-Asl M, Enyashin AN, Kuc A, Seifert G, Heine T (2013) Phys Rev B 88(245440):1–7

    Google Scholar 

Download references

Acknowledgments

We thank the “National Centre for Photovoltaic Research and Education (NCPRE),” Ministry of New and Renewable Energy, Govt. of India, and IRCC-IIT Bombay for financial support and infrastructural facilities. The authors are thankful to the members of SAIF, IIT Bombay, for their assistance with electron diffraction and FEG-SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Mitra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, U.K., Mitra, S. Improved electrode fabrication method to enhance performance and stability of MoS2-based lithium-ion battery anode. J Solid State Electrochem 18, 2701–2708 (2014). https://doi.org/10.1007/s10008-014-2518-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2518-8

Keywords

Navigation