Skip to main content
Log in

Binder-free phosphorus-doped MoS2 flexible anode deposited on carbon cloth for high-capacity Li-ion battery applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molybdenum disulphide (MoS2), conversion-type transition metal dichalcogenide, despite having the high theoretical capacity and adequate stability, suffers from poor electronic conductivity; large volumetric changes leading to material degradation and agglomeration of nanostructures after long cycling are hindering its practical application. This work presents the tactics used to mitigate the hindrances by doping the MoS2 matrix with phosphorus (P) and is grown directly on carbon cloth without any binders via a simple one-step hydrothermal method. A mechanism of crystal structure transformation with respect to the doping concentration is proposed based on X-ray diffraction and ultraviolet–visible spectrum results. Raman analysis is carried out to conclude the phase examination of MoS2. The reduction in agglomeration of MoS2 nanoparticles due to the P doping is analysed by employing scanning electron microscope. The optimized P-MoS2 is used directly as an anode in Lithium-ion batteries which exhibits high initial discharge capacity (2032 mAhg−1 at the 40th cycle with a current rate of 100 mAg−1) and reasonably good stability (713 mAhg−1 after 500 cycles at 500 mAg−1). Compared to that of bare MoS2 electrode, the better performance of P-MoS2 anode is due to the synergetic effects of optimized P doping and the presence of P–O bonds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Francis MK, Bhargav PB, Ramesh A, Ahmed N, Balaji C (2022) Electrochemical performance analysis of NiMoO4/α-MoO3 composite as anode material for high capacity lithium-ion batteries. Appl Phys A 128:1–6

    Article  Google Scholar 

  2. Leijonmarck S, Cornell A, Lindbergh G, Wågberg L (2013) Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J Mater Chem A 1:4671–4677. https://doi.org/10.1039/C3TA01532G

    Article  CAS  Google Scholar 

  3. Zhao Y, Guo J (2020) Development of flexible Li-ion batteries for flexible electronics. InfoMat 2:866–878. https://doi.org/10.1002/inf2.12117

    Article  CAS  Google Scholar 

  4. Flexible Battery Market Share and Trends Global Forecast to 2025 MarketsandMarketsTM, (n.d.). https://www.marketsandmarkets.com/Market-Reports/flexible-battery-market-190884508.html (accessed February 25, 2022).

  5. Sun X, Wang Z, Li Z, Fu YQ (2016) Origin of structural transformation in mono- and bi-layered molybdenum disulfide. Sci Rep 6:26666. https://doi.org/10.1038/srep26666

    Article  CAS  Google Scholar 

  6. Ma B, Chen S, Huang Y, Nie Z, Qiu X, Xie X, Wu Z (2021) Electrochemical lithium storage performance of three-dimensional foam-like biocarbon/MoS2 composites. Trans Nonferrous Metals Soc China 31:255–264. https://doi.org/10.1016/S1003-6326(21)65492-4

    Article  Google Scholar 

  7. Liu Y, Zhang L, Wang H, Yu C, Yan X, Liu Q, Xu B, Wang L (2018) Synthesis of severe lattice distorted MoS2 coupled with hetero-bonds as anode for superior lithium-ion batteries. Electrochim Acta 262:162–172. https://doi.org/10.1016/j.electacta.2018.01.023

    Article  CAS  Google Scholar 

  8. Sun C, Zhao K, He Y, Zheng J, Xu W, Zhang C, Wang X, Guo M, Mai L, Wang C (2019) Interconnected vertically stacked 2D-MoS2 for ultrastable cycling of rechargeable Li-ion battery. ACS Appl Mater Interfaces 11:20762–20769

    Article  CAS  Google Scholar 

  9. George C, Morris AJ, Modarres MH, De Volder M (2016) Structural evolution of electrochemically lithiated MoS2 nanosheets and the role of carbon additive in Li-Ion batteries. Chem Mater 28:7304–7310. https://doi.org/10.1021/acs.chemmater.6b02607

    Article  CAS  Google Scholar 

  10. Liu X, Wang Y, Yang Y, Lv W, Lian G, Golberg D, Wang X, Zhao X, Ding Y (2020) A MoS2/carbon hybrid anode for high-performance Li-ion batteries at low temperature. Nano Energy 70:104550

    Article  CAS  Google Scholar 

  11. Xiao Z, Sheng L, Jiang L, Zhao Y, Jiang M, Zhang X, Zhang M, Shi J, Lin Y, Fan Z (2021) Nitrogen-doped graphene ribbons/MoS2 with ultrafast electron and ion transport for high-rate Li-ion batteries. Chem Eng J 408:127269

    Article  CAS  Google Scholar 

  12. Angamuthu G, Rengarajan V (2020) MoS2 mediated nitrogen enriched composite material for high and fast Li-ion storage. Appl Surf Sci 525:146437. https://doi.org/10.1016/j.apsusc.2020.146437

    Article  CAS  Google Scholar 

  13. Venkateshwaran S, Partheeban T, Sasidharan M, Senthil Kumar SM (2021) Mesoporous silica template-assisted synthesis of 1T-MoS2 as the anode for Li-Ion battery applications. Energy Fuels 35:2683–2691

    Article  CAS  Google Scholar 

  14. Jiao Y, Mukhopadhyay A, Ma Y, Yang L, Hafez AM, Zhu H (2018) Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv Energy Mater 8:1702779

    Article  Google Scholar 

  15. Wang J, Zhang L, Sun K, He J, Zheng Y, Xu C, Zhang Y, Chen Y, Li M (2019) Improving ionic/electronic conductivity of MoS2 Li-ion anode via manganese doping and structural optimization. Chem Eng J 372:665–672

    Article  CAS  Google Scholar 

  16. Tang P, Jiao J, Fan Q, Wang X, Agrawal V, Xu Q (2021) Interlayer spacing engineering in N doped MoS2 for efficient lithium ion storage. Mater Chem Phys 261:124166

    Article  CAS  Google Scholar 

  17. Amine R, Daali A, Zhou X, Liu X, Liu Y, Ren Y, Zhang X, Zhu L, Al-Hallaj S, Chen Z, Xu G-L, Amine K (2020) A practical phosphorus-based anode material for high-energy lithium-ion batteries. Nano Energy 74:104849. https://doi.org/10.1016/j.nanoen.2020.104849

    Article  CAS  Google Scholar 

  18. Ramireddy T, Xing T, Rahman MM, Chen Y, Dutercq Q, Gunzelmann D, Glushenkov AM (2015) Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J Mater Chem A 3:5572–5584. https://doi.org/10.1039/C4TA06186A

    Article  CAS  Google Scholar 

  19. Liu J, Wang Z, Li J, Cao L, Lu Z, Zhu D (2020) Structure engineering of MoS2 via simultaneous oxygen and phosphorus incorporation for improved hydrogen evolution. Small 16:1905738

    Article  CAS  Google Scholar 

  20. Gao W, Sun J, Han M, Li F, Gao Z, Shu L, Han N, Yang ZX, Song A (2018) others, Phosphorus-doped MoS2 nanosheets supported on carbon cloths as efficient hydrogen-generation electrocatalysts. ChemCatChem 10:1571–1577

    Article  Google Scholar 

  21. Xin X, Song Y, Guo S, Zhang Y, Wang B, Wang Y, Li X (2020) One-step synthesis of P-doped MoS2 for efficient photocatalytic hydrogen production. J Alloy Compd 829:154635. https://doi.org/10.1016/j.jallcom.2020.154635

    Article  CAS  Google Scholar 

  22. Wang C, Yu X, Park HS (2020) Boosting redox-active sites of 1T MoS2 phase by phosphorus-incorporated hierarchical graphene architecture for improved Li storage performances. ACS Appl Mater Interfaces 12:51329–51336

    Article  CAS  Google Scholar 

  23. Francis MK, Balaji Bhargav P, Santhosh N, Ahmed N, Balaji C, Govindaraj R (2020) Carbonaceous-MoS2 nanoflower based counter electrodes for bifacial dye sensitized solar cells. J Phys D Appl Phys 54:135501. https://doi.org/10.1088/1361-6463/abd6ab

    Article  CAS  Google Scholar 

  24. Zhang S, Chowdari BVR, Wen Z, Jin J, Yang J (2015) Constructing highly oriented configuration by few-layer MoS 2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano 9:12464–12472. https://doi.org/10.1021/acsnano.5b05891

    Article  CAS  Google Scholar 

  25. Sun B, Liang Z, Qian Y, Xu X, Han Y, Tian J (2020) Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS. ACS Appl Mater Interfaces 12:7257–7269

    Article  CAS  Google Scholar 

  26. Joensen P, Crozier E, Alberding N, Frindt R (1987) A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy. J Phys C: Solid State Phys 20:4043–4053

    Article  CAS  Google Scholar 

  27. Geng X, Sun W, Wu W, Chen B, Al-Hilo A, Benamara M, Zhu H, Watanabe F, Cui J, Chen T (2016) Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction, Nature. Communications 7:1–7

    Google Scholar 

  28. Wu M, Zhan J, Wu K, Li Z, Wang L, Geng B, Wang L, Pan D (2017) Metallic 1T MoS 2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance. J Mater Chem A 5:14061–14069

    Article  CAS  Google Scholar 

  29. Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M (2012) Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6:7311–7317

    Article  CAS  Google Scholar 

  30. Saha D, Kruse P (2020) Editors’ choice—review—conductive forms of mos2 and their applications in energy storage and conversion. J Electrochem Soc 167:126517

    Article  CAS  Google Scholar 

  31. Momose T, Nakamura A, Daniel M, Shimomura M (2018) Phosphorous doped p-type MoS2 polycrystalline thin films via direct sulfurization of Mo film. AIP Adv 8:025009

    Article  Google Scholar 

  32. Zhao W, Liu X, Yang X, Liu C, Qian X, Sun T, Chang W, Zhang J, Chen Z (2020) Synthesis of novel 1t/2h-MoS2 from moo3 nanowires with enhanced photocatalytic performance. Nanomaterials 10:1124

    Article  CAS  Google Scholar 

  33. Zhao Y, Wei S, Wang F, Xu L, Liu Y, Lin J, Pan K, Pang H (2020) Hatted 1T/2H-Phase MoS2 on Ni3S2 nanorods for efficient overall water splitting in alkaline media. Chem A Eur J 26:2034–2040

    Article  CAS  Google Scholar 

  34. Yang F, Kang N, Yan J, Wang X, He J, Huo S, Song L (2018) Hydrogen evolution reaction property of molybdenum disulfide/nickel phosphide hybrids in alkaline solution. Metals 8:359

    Article  Google Scholar 

  35. Hussain S, Singh J, Vikraman D, Singh AK, Iqbal MZ, Khan MF, Kumar P, Choi D-C, Song W, An K-S, Eom J, Lee W-G, Jung J (2016) Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method. Sci Rep 6:30791. https://doi.org/10.1038/srep30791

    Article  CAS  Google Scholar 

  36. Shu H, Li F, Hu C, Liang P, Cao D, Chen X (2016) The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries. Nanoscale 8:2918–2926. https://doi.org/10.1039/C5NR07909H

    Article  CAS  Google Scholar 

  37. Panda MR, Gangwar R, Muthuraj D, Sau S, Pandey D, Banerjee A, Chakrabarti A, Sagdeo A, Weyland M, Majumder M (2020) High performance lithium-ion batteries using layered 2H-MoTe2 as anode. Small 16:2002669

    Article  CAS  Google Scholar 

  38. Wang C, Wan W, Huang Y, Chen J, Zhou HH, Zhang XX (2014) Hierarchical MoS 2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale 6:5351–5358

    Article  CAS  Google Scholar 

  39. Zhong Y, Shi T, Huang Y, Cheng S, Chen C, Liao G, Tang Z (2019) Three-dimensional MoS2/graphene aerogel as binder-free electrode for Li-ion battery. Nanoscale Res Lett 14:1–8. https://doi.org/10.1186/s11671-019-2916-z

    Article  CAS  Google Scholar 

  40. Guo Y, Qi X, Fu X, Hu Y, Peng Z (2019) Vertically standing ultrathin MoS2 nanosheet arrays on molybdenum foil as binder-free anode for lithium-ion batteries. J Mater Sci 54:4105–4114. https://doi.org/10.1007/s10853-018-3091-9

    Article  CAS  Google Scholar 

  41. Cao R, Chen Y, Ge X, Yuan G, Huang T, Xu Q, Wang Z (2022) Free-standing MoS2/graphene flexible film as binder-free electrode for enhanced electrochemical performances in lithium-ion half-cells and full-cells. Ionics 28:201–212. https://doi.org/10.1007/s11581-021-04289-2

    Article  CAS  Google Scholar 

  42. Wu M, Liu C, Sun R, Yu T, Li Y, Yang G (2020) Carbon nanofiber activated by molybdenum disulfide as an effective binder-free composite anode for highly reversible lithium storage. Int J Energy Res 44:4605–4615

    Article  CAS  Google Scholar 

  43. Pan Y, Zhang J, Lu H (2017) Uniform yolk-shell MoS2@ carbon microsphere anodes for high-performance lithium-ion batteries. Chem A Eur J 23:9937–9945

    Article  CAS  Google Scholar 

  44. Wu M, Liu C, Xu H, Shen J, Yang Y, Yang G (2018) Carbon nanorod- MoS2 core- sheath heterostructure and its electrochemical properties over various electrochemical windows. Chem Electro Chem 5:1288–1296

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Balaji Bhargav.

Ethics declarations

Conflict of interest

Hereby, we declare that there is no conflict interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1757 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, M.K., Rajesh, K., Bhargav, P.B. et al. Binder-free phosphorus-doped MoS2 flexible anode deposited on carbon cloth for high-capacity Li-ion battery applications. J Mater Sci 58, 4054–4069 (2023). https://doi.org/10.1007/s10853-023-08266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08266-0

Navigation