Skip to main content
Log in

A facile method to prepare bi-phase lithium vanadate as cathode materials for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Bi-crystal lithium vanadate is synthesized with starting materials of V2O5 and LiF by one-step solid-state reaction. Since fluorine reacts with crucible made of silica, Li0.3V2O5-liked and LiV3O8-liked phases without F coexist in the produces. The stoichiometric proportion of two phases depends on the amount of dopant LiF. These are confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and transmission electron microscopy (TEM). Charge and discharge curves of bi-crystal materials present better reversibility of voltage plateaus than that of pure V2O5. The initial discharge capacity of Li0.3V2O5-liked phase dominated bi-crystal material is higher than pure V2O5. LiV3O8-liked phase dominated bi-crystal material has lower initial discharge capacity but delivers better cycling performance. Electrochemical impedance spectroscopy (EIS) measurements are performed to evaluate electrochemical kinetics of the bi-crystal materials. The results indicate that bi-crystal phase benefit the transfer resistance, interior diffusion resistance, and structure stability. Cathodes with different bi-phase structures have variable charge transfer resistance and lithium-ion diffusion speed due to this special structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2004) Cathode materials for lithium ion batteries prepared by sol-gel methods. J Solid State Electrochem 8(7):450–466

    CAS  Google Scholar 

  2. Chen ZH, Lee DJ, Sun YK, Amine K (2011) Advanced cathode materials for lithium-ion batteries. MRS Bull 36(7):498–505

    Article  Google Scholar 

  3. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  4. Cui P, Jia ZJ, Li LY, He T (2011) Study on the performance characteristics of Li-V-O nanocomposite as cathode material for Li-ion batteries. Electrochim Acta 56(12):4571–4575

    Article  CAS  Google Scholar 

  5. Wang Y, Xu X, Cao C, Shi C, Mo W, Zhu H (2013) Synthesis and performance of Li1.5V3O8 nanosheets as a cathode material for high-rate lithium-ion batteries. J Power Sources 242:230–235

    Article  CAS  Google Scholar 

  6. Zhu D, Liu H, Lv L, Yao YD, Yang WZ (2008) Hollow microspheres of V2O5 and Cu-doped V2O5 as cathode materials for lithium-ion batteries. Scr Mater 59(6):642–645

    Article  CAS  Google Scholar 

  7. Dai JX, Li SFY, Gao ZQ, Siow KS (1998) Low-temperature synthesized LiV3O8 as a cathode material for rechargeable lithium batteries. J Electrochem Soc 145(9):3057–3062

    Article  CAS  Google Scholar 

  8. Wu J, Membreno N, Yu WY, Wiggins-Camacho JD, Flaherty DW, Mullins CB, Stevenson KJ (2012) Influence of hydrofluoric acid formation on lithium ion insertion in nanostructured V2O5. J Phys Chem C 116(40):21208–21215

    Article  CAS  Google Scholar 

  9. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954

    Article  CAS  Google Scholar 

  10. Kawakita J, Katagiri H, Miura T, Kishi T (1997) Lithium insertion behaviour of manganese or molybdenum substituted Li1 + xV3O8. J Power Sources 68(2):680–685

    Article  CAS  Google Scholar 

  11. Kawakita J, Miura T, Kishi T (1999) Lithium insertion and extraction kinetics of Li1 + xV3O8. J Power Sources 83(1–2):79–83

    Article  CAS  Google Scholar 

  12. Boucher F, Bourgeon N, Delbé K, Moreau P, Guyomard D, Ouvrard G (2006) Study of Li1 + xV3O8 by band structure calculations and spectroscopies. J Phys Chem Solids 67(5–6):1238–1242

    CAS  Google Scholar 

  13. Liu L, Jiao LF, Sun JL, Zhang YH, Zhao M, Yuan HT, Wang YM (2008) Electrochemical performance of LiV3-xNixO8 cathode materials synthesized by a novel low-temperature solid-state method. Electrochim Acta 53(24):7321–7325

    Article  CAS  Google Scholar 

  14. Feng Y, Li YL, Hou F (2009) Boron doped lithium trivanadate as a cathode material for an enhanced rechargeable lithium ion batteries. J Power Sources 187(1):224–228

    Article  CAS  Google Scholar 

  15. Ren X, Hu S, Shi C, Zhang P, Yuan Q, Liu J (2012) Preparation and electrochemical properties of Zr-doped LiV3O8 cathode materials for lithium-ion batteries. J Solid State Electrochem 16(6):2135–2141

    CAS  Google Scholar 

  16. Ren XZ, Hu SM, Shi C, Zhang PX, Yuan QH, Liu JH (2012) Preparation of Ga-doped lithium trivanadates as cathode materials for lithium-ion batteries. Electrochim Acta 63:232–237

    Article  CAS  Google Scholar 

  17. Wu ZJ, Zhou Y (2012) Effect of Ce-doping on the structure and electrochemical performance of lithium trivanadate prepared by a citrate sot-gel method. J Power Sources 199:300–307

    Article  CAS  Google Scholar 

  18. Chew SY, Feng CQ, Ng SH, Wang JZ, Guo ZP, Liu HK (2007) Low-temperature synthesis of polypyrrole-coated LiV3O8 composite with enhanced electrochemical properties. J Electrochem Soc 154(7):A633–A637

    Article  CAS  Google Scholar 

  19. Feng CQ, Chew SY, Guo ZP, Wang JZ, Liu HK (2007) An investigation of polypyrrole-LiV3O8 composite cathode materials for lithium-ion batteries. J Power Sources 174(2):1095–1099

    Article  CAS  Google Scholar 

  20. BaddourHadjean R, Farcy J, PereiraRamos JP, Baffier N (1996) A kinetic study of lithium transport in a new Li intercalation material Al0.11V2O5.15 synthesized via a sol-gel process. J Electrochem Soc 143(7):2083–2088

    Article  CAS  Google Scholar 

  21. Wei YJ, Ryu CW, Kim KB (2007) Improvement in electrochemical performance of V2O5 by Cu doping. J Power Sources 165(1):386–392

    Article  CAS  Google Scholar 

  22. Li HX, Jiao LF, Yuan HT, Zhao M, Zhang M, Wang YM (2007) High-performance Cu-doped vanadium oxide (CuxV2O5) prepared by rapid precipitation method for rechargeable batteries. Mater Lett 61(1):101–104

    Article  CAS  Google Scholar 

  23. West K, ZachauChristiansen B, Skaarup S, Saidi Y, Barker J, Olsen II, Pynenburg R, Koksbang R (1996) Comparison of LiV3O8 cathode materials prepared by different methods. J Electrochem Soc 143(3):820–825

    Article  CAS  Google Scholar 

  24. Dubarry M, Gaubicher J, Moreau P, Guyomard D (2006) Formation of Li1 + nV3O8/beta-Li1/3V2O5/C nanocomposites by carboreduction and the resulting improvement in Li capacity retention. J Electrochem Soc 153(2):A295–A300

    Article  CAS  Google Scholar 

  25. Liu YM, Zhou XC, Guo YL (2009) Effects of fluorine doping on the electrochemical properties of LiV3O8 cathode material. Electrochim Acta 54(11):3184–3190

    Article  CAS  Google Scholar 

  26. Wang YY, Tang Y, Zhong BH, Liu H, Zhong YJ, Guo XD (2014) Facile synthesis of Li3V2 (Po-4) (3)/C nano-flakes with high-rate performance as cathode material for Li-ion battery. J Solid State Electrochem 18(1):215–221

    CAS  Google Scholar 

  27. Xu B, Qian DN, Wang ZY, Meng YSL (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R 73(5–6):51–65

    CAS  Google Scholar 

  28. Surca A, Orel B (1999) IR spectroscopy of crystalline V2O5 films in different stages of lithiation. Electrochim Acta 44(18):3051–3057

    Article  CAS  Google Scholar 

  29. Campostrini R, Ischia M, Carturan G, Armelao L (2002) Sol-gel synthesis and pyrolysis study of oxyfluoride silica gels. J Sol-Gel Sci Technol 23(2):107–117

    Article  CAS  Google Scholar 

  30. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4301

    Article  CAS  Google Scholar 

  31. Groult H, Nakajima T, Kumagai N, Devilliers D (1996) Characterization and electrochemical properties of C-x(VOF3)F as positive material for primary lithium batteries. J Power Sources 62(1):107–112

    Article  CAS  Google Scholar 

  32. Jiao L, Yuan H, Wang Y, Cao J, Wang Y (2005) Mg intercalation properties into open-ended vanadium oxide nanotubes. Electrochem Commun 7(4):431–436

    Article  CAS  Google Scholar 

  33. Jiao LF, Yuan HT, Si YC, Wang YJ, Wang YM (2006) Synthesis of Cu-0.1-doped vanadium oxide nanotubes and their application as cathode materials for rechargeable magnesium batteries. Electrochem Commun 8(6):1041–1044

    Article  CAS  Google Scholar 

  34. Cui C-J, Wu G-M, Yang H-Y, She S-F, Shen J, Zhou B, Zhang Z-H (2010) A new high-performance cathode material for rechargeable lithium-ion batteries: Polypyrrole/vanadium oxide nanotubes. Electrochim Acta 55(28):8870–8875

    Article  CAS  Google Scholar 

  35. Cui C, Wu G, Yang H, She S, Shen J, Zhou B, Zhang Z (2010) Synthesis, characterization and electrochemical impedance spectroscopy of VOx-NTs/PPy composites. Solid State Commun 150(37–38):1807–1811

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (grant numbers 51272179, 51102183), Shanghai Committee of Science and Technology (11 nm0501300, 13JC1408700), and National high-tech R-D program of china (863 program) (grant no.2013AA031801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohua Gao or Guangming Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Gao, G., Zhou, X. et al. A facile method to prepare bi-phase lithium vanadate as cathode materials for Li-ion batteries. J Solid State Electrochem 18, 2459–2467 (2014). https://doi.org/10.1007/s10008-014-2499-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2499-7

Keywords

Navigation