Skip to main content

Advertisement

Log in

Indicator-free electrochemical genosensing originated from the self-signal of poly-xanthurenic acid enhanced by Fe3O4/reduced graphene oxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, an indicator-free electrochemical genosensing platform based on the self-signal changes of poly-xanthurenic acid (PXa) enhanced by Fe3O4/reduced graphene oxide (Fe3O4/RGO) was constructed. The resulting nanocomposite (PXa-Fe3O4/RGO) was characterized by transmission electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The π–π* stacking and hydrogen bonding between the conjugated Fe3O4/GO and aromatic ring of xanthurenic acid monomer promoted the electropolymerization efficiency accompanied with an increased electrochemical response of PXa. The immobilization of the specific probe DNA was successfully realized via the noncovalent method due to the π–π* interaction between the conjugated nanostructure of PXa-Fe3O4/RGO and DNA bases. The hybridization between the probe DNA and target DNA induced the resulted double-stranded (ds)DNA to be released from the conjugated nanocomposite, accompanied with the self-signal regeneration of nanocomposite (“signal-on”). The self-signal changes could serve as a powerful tool for indicator-free and freely switchable detection of different target genes, and the synergistic effect of the integrated graphene-based nanocomposite effectively improved the sensitivity for the target DNA detection via EIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    Article  CAS  Google Scholar 

  2. Liu AL, Wang K, Weng SH, Lei Y, Lin LQ, Chen W, Lin XH, Chen YZ (2012) Development of electrochemical DNA biosensors. Trends Anal Chem 37:101–111

    Article  Google Scholar 

  3. Hu YW, Li FH, Bai XX, Li D, Hua SC, Wang KK, Niu L (2011) Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chem Commun 47:1743–1745

    Article  CAS  Google Scholar 

  4. Li L, Wang S, Yang T, Huang SM, Wang JC (2012) Electrochemical growth of gold nanoparticles on horizontally aligned carbon nanotubes: a new platform for ultrasensitive DNA sensing. Biosens Bioelectron 33:279–283

    Article  Google Scholar 

  5. Zhang W (2013) High-performance impedimetric genosensor based on biocompatible TiO2 nanoparticles supported carbon ionic liquid electrode. Sensors Actuators B 176:386–389

    Article  CAS  Google Scholar 

  6. Hu YW, Yang T, Wang XX, Jiao K (2010) Highly sensitive indicator-free impedance sensing of DNA hybridization based on poly(m-aminobenzenesulfonic acid)/TiO2 nanosheet membranes with pulse potentiostatic method preparation. Chem Eur J 16:1992–1999

    Article  CAS  Google Scholar 

  7. Peng H, Zhang LJ, Soeller C, Travas-Sejdic J (2009) Conducting polymers for electrochemical DNA sensing. Biomaterials 30:2132–2148

    Article  CAS  Google Scholar 

  8. Bo Y, Yang HY, Hu Y, Yao TM, Huang SS (2011) A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim Acta 56:2676–2681

    Article  CAS  Google Scholar 

  9. Silva FAS, Lopes CB, Costa EO, Lima PR, Kubota LT, Goulart MOF (2010) Poly-xanthurenic acid as an efficient mediator for the electrocatalytic oxidation of NADH. Electrochem Commun 12:450–454

    Article  CAS  Google Scholar 

  10. Lin KC, Li YS, Chen SM (2013) Electrochemical determination of nicotinamide adenine dinucleotide and hydrogen peroxide based on poly(xanthurenic acid), flavin adenine dinucleotide and functionalized multi-walled carbon nanotubes. Sensors Actuators B 184:212–219

    Article  CAS  Google Scholar 

  11. Weiss NO, Zhou HL, Liao L, Liu Y, Jiang S, Huang Y, Duan XF (2012) Graphene: an emerging electronic material. Adv Mater 24:5782–5825

    Article  CAS  Google Scholar 

  12. Luo ZM, Ma XB, Yang DL, Yuwen LH, Zhu XR, Weng LX, Wang LH (2013) Synthesis of highly dispersed titanium dioxide nanoclusters on reduced graphene oxide for increased glucose sensing. Carbon 57:470–476

    Article  CAS  Google Scholar 

  13. Nayak P, Anbarasan B, Ramaprabhu S (2013) Fabrication of organophosphorus biosensor using ZnO nanoparticle-decorated carbon nanotube-graphene hybrid composite prepared by a novel green technique. J Phys Chem C 117:13202–13209

    Article  CAS  Google Scholar 

  14. Dong XC, Ma YW, Zhu GY, Huang YX, Wang J, Chan-Park MB, Wang LH, Huang W, Chen P (2012) Synthesis of grapheme-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. J Mater Chem 22:17044–17048

    Article  CAS  Google Scholar 

  15. Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W (2011) One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mater 21:2989–2996

    Article  CAS  Google Scholar 

  16. Yang T, Guan Q, Guo XH, Meng L, Du M, Jiao K (2013) Direct and freely switchable detection of target genes engineered by reduced graphene oxide-poly(m-aminobenzenesulfonic acid) nanocomposite via synchronous pulse electrosynthesis. Anal Chem 85:1358–1366

    Article  CAS  Google Scholar 

  17. Yang T, Li QH, Li X, Wang XH, Du M, Jiao K (2013) Freely switchable impedimetric detection of target gene sequence based on synergistic effect of ERGNO/PANI nanocomposites. Biosens Bioelectron 42:415–418

    Article  Google Scholar 

  18. Bonanni A, Pumera M (2011) Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5:2356–2361

    Article  CAS  Google Scholar 

  19. Jiang C, Yang T, Jiao K, Gao HW (2008) A DNA electrochemical sensor with poly-l-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochim Acta 53:2917–2924

    Article  CAS  Google Scholar 

  20. Song YH, He ZF, Hou HQ, Wang XL, Wang L (2012) Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochim Acta 71:58–65

    Article  CAS  Google Scholar 

  21. Haccoun J, Piro B, Tran LD, Dang LA, Pham MC (2004) Reagentless amperometric detection of l-lactate on an enzyme-modified conducting copolymer poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-3-thioacetic acid-1,4-naphthoquinone). Biosens Bioelectron 19:1325–1329

    Article  CAS  Google Scholar 

  22. Zhang W, Yang T, Jiao K (2012) Ultrasensitive indicator-free and enhanced self-signal nanohybrid DNA sensing platform based on electrochemically grown poly-xanthurenic acid/Fe2O3 membranes. Biosens Bioelectron 31:182–189

    Article  Google Scholar 

  23. Bonanni A, del Valle M (2010) Use of nanomaterials for impedimetric DNA sensors: a review. Anal Chim Acta 678:7–17

    Article  CAS  Google Scholar 

  24. Hu YW, Wang KK, Zhang QX, Li FH, Wu TS, Niu L (2012) Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials 33:1097–1106

    Article  CAS  Google Scholar 

  25. Wang L, Zhang YW, Tian JQ, Li HL, Sun XP (2011) Conjugation polymer nanobelts: a novel fluorescent sensing platform for nucleic acid detection. Nucleic Acids Res 39:e37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21205057, 21101087, 21375057), Shandong Province Natural Science Foundation (No. ZR2010BQ030), and the Doctoral Fund and Scientific Research Project of Linyi University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Xiuwen Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, L. & Zheng, X. Indicator-free electrochemical genosensing originated from the self-signal of poly-xanthurenic acid enhanced by Fe3O4/reduced graphene oxide. J Solid State Electrochem 18, 2367–2373 (2014). https://doi.org/10.1007/s10008-014-2487-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2487-y

Keywords

Navigation