Skip to main content
Log in

Development of DNA monitoring platform based on poly(xanthurenic acid) functionalized FePt/reduced graphene oxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A freely switchable DNA monitoring platform based on poly(xanthurenic acid) functionalized FePt/reduced graphene oxide (PXa-FePt/RGO) was developed, where the PXa and FePt/RGO were synchronously synthesized via an effective pulse potentiostatic method. The obtained nanocomposite integrated the advantages of the PXa and FePt/RGO, including rich-conjugated structures, good conductivity, and fine biocompatibility, which not only served as a substrate for DNA immobilization but also reflected the electrochemical transduction originating from DNA immobilization and hybridization without any complicated labeling or outer indicators. The immobilization of probe DNA was successfully conducted via noncovalent assembly due to the π–π* interaction between the conjugated nanocomposite and DNA bases. After the hybridization of probe DNA with target DNA, the formation of double-helix structure induced dsDNA to release from the surface of conjugated nanocomposite, accompanied with the self-signal regeneration of nanocomposite (“signal-on”). The developed biosensor exhibited excellent performance for the detection of the sequence-specific DNA from chronic myelogenous leukemia by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with a detection limit of 2.1 × 10−16 mol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    Article  CAS  Google Scholar 

  2. Salamifar SE, Lai RY (2014) Fabrication of electrochemical DNA sensors on gold-modified recessed platinum nanoelectrodes. Anal Chem 86:2849–2852

    Article  CAS  Google Scholar 

  3. Hu LH, Tan TT, Chen G, Zhang K, Zhu JJ (2013) Ultrasensitive electrochemical detection of BCR/ABL fusion gene fragment based on polymerase assisted multiplication coupling with quantum dot tagging. Electrochem Commun 35:104–107

    Article  CAS  Google Scholar 

  4. Liu SF, Wang CF, Zhang CX, Wang Y, Tang B (2013) Label-free and ultrasensitive electrochemical detection of nucleic acids based on autocatalytic and exonuclease III-assisted target recycling strategy. Anal Chem 85:2282–2288

    Article  CAS  Google Scholar 

  5. Kannan B, Williams DE, Booth MA, Travas-Sejdic J (2011) High-sensitivity, label-free DNA sensors using electrochemically active conducting polymers. Anal Chem 83:3415–3421

    Article  CAS  Google Scholar 

  6. Zhang W, Yang T, Jiao K (2012) Ultrasensitive indicator-free and enhanced self-signal nanohybrid DNA sensing platform based on electrochemically grown poly-xanthurenic acid/Fe2O3 membranes. Biosens Bioelectron 31:182–189

    Article  Google Scholar 

  7. Li CZ, Karadeniz H, Canavar E, Erdem A (2012) Electrochemical sensing of label free DNA hybridization related to breast cancer 1 gene at disposable sensor platforms modified with single walled carbon nanotubes. Electrochim Acta 82:137–142

    Article  CAS  Google Scholar 

  8. Li F, Han XP, Liu SF (2011) Development of an electrochemical DNA biosensor with a high sensitivity of fM by dendritic gold nanostructure modified electrode. Biosens Bioelectron 26:2619–2625

    Article  CAS  Google Scholar 

  9. Zhang W (2013) High-performance impedimetric genosensor based on biocompatible TiO2 nanoparticles supported carbon ionic liquid electrode. Sens Actuators B 176:386–389

    Article  CAS  Google Scholar 

  10. Yang T, Guan Q, Guo XH, Meng L, Du M, Jiao K (2009) Direct and freely switchable detection of target genes engineered by reduced graphene oxide-poly(m-aminobenzenesulfonic acid) nanocomposite via synchronous pulse electrosynthesis. Anal Chem 85:1358–1366

    Article  Google Scholar 

  11. Peng H, Zhan LJ, Soeller C, Travas-Sejdic J (2009) Conducting polymers for electrochemical DNA sensing. Biomaterials 30:2132–2148

    Article  CAS  Google Scholar 

  12. Silva FAS, Lopes CB, Kubota LT, Lima PR, Goulart MOF (2012) Poly-xanthurenic acid modified electrodes: an amperometric sensor for the simultaneous determination of ascorbic and uric acids. Sens Actuators B 168:289–296

    Article  CAS  Google Scholar 

  13. Lin KC, Li YS, Chen SM (2013) Electrochemical determination of nicotinamide adenine dinucleotide and hydrogen peroxide based on poly(xanthurenic acid), flavin adenine dinucleotide and functionalized multi-walled carbon nanotubes. Sens Actuators B 184:212–219

    Article  CAS  Google Scholar 

  14. Yang T, Li QH, Meng L, Wang XH, Chen WW, Jiao K (2013) Synchronous electrosynthesis of poly(xanthurenic acid)-reduced graphene oxide nanocomposite for highly sensitive impedimetric detection of DNA. ACS Appl Mater Interfaces 5:3495–3499

    Article  CAS  Google Scholar 

  15. Martín A, Escarpa A (2014) Graphene: the cutting-edge interaction between chemistry and electrochemistry. Trends Anal Chem 56:13–26

    Article  Google Scholar 

  16. Luo ZM, Ma XB, Yang DL, Yuwen LH, Zhu XR, Weng LX, Wang LH (2013) Synthesis of highly dispersed titanium dioxide nanoclusters on reduced graphene oxide for increased glucose sensing. Carbon 57:470–476

    Article  CAS  Google Scholar 

  17. Chen XM, Cai ZX, Huang ZY, Oyama M, Jiang YQ, Chen X (2013) Ultrafine palladium nanoparticles grown on graphene nanosheets for enhanced electrochemical sensing of hydrogen peroxide. Electrochim Acta 97:398–403

    Article  CAS  Google Scholar 

  18. Zhan BB, Liu CB, Chen HP, Shi HX, Wang LH, Chen P, Huang W, Dong XC (2014) Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. Nanoscale 6:7424–7429

    Article  CAS  Google Scholar 

  19. Lei W, Wu LH, Huang WJ, Hao QL, Zhang YH, Xia XF (2014) Microwave-assisted synthesis of hemin–graphene/poly(3,4-ethylenedioxythiophene) nanocomposite for a biomimetic hydrogen peroxide biosensor. J Mater Chem B 2:4324–4330

    Article  CAS  Google Scholar 

  20. Wang GC, Tan XC, Zhou Q, Liu YJ, Wang M, Yang L (2014) Synthesis of highly dispersed zinc oxide nanoparticles on carboxylic graphene for development a sensitive acetylcholinesterase. Sens Actuators B 190:730–736

    Article  CAS  Google Scholar 

  21. Kim KS, Um YM, Jang JR, Choe WS, Yoo PJ (2013) Highly sensitive reduced graphene oxide impedance sensor harnessing π-stacking interaction mediated direct deposition of protein probes. ACS Appl Mater Interfaces 5:3591–3598

    Article  CAS  Google Scholar 

  22. Silva FAS, Lopes CB, Costa EO, Lima PR, Kubota LT, Goulart MOF (2010) Poly-xanthurenic acid as an efficient mediator for the electrocatalytic oxidation of NADH. Electrochem Commun 12:450–454

    Article  CAS  Google Scholar 

  23. Yang T, Li QH, Li X, Wang XH, Du M, Jiao K (2013) Freely switchable impedimetric detection of target gene sequence based on synergistic effect of ERGNO/PANI nanocomposites. Biosens Bioelectron 42:415–418

    Article  Google Scholar 

  24. Bonanni A, Pumera M (2011) Graphene platform for hairpin-DNA based impedimetric genosensing. ACS Nano 5:2356–2361

    Article  CAS  Google Scholar 

  25. Zhang W, Yang T, Li X, Wang DB, Jiao K (2009) Conductive architecture of Fe2O3 microspheres/self-doped polyaniline nanofibers on carbon ionic liquid electrode for impedance sensing of DNA hybridization. Biosens Bioelectron 25:428–434

    Article  Google Scholar 

  26. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  27. Chen D, Zhao X, Chen SS, Li HF, Fu XN, Wu QZ, Li SP, Li Y, Su BL, Ruoff RS (2014) One-pot fabrication of FePt/reduced graphene oxide composites as highly active and stable electrocatalysts for the oxygen reduction reaction. Carbon 68:755–762

    Article  CAS  Google Scholar 

  28. Haccoun J, Piro B, Tran LD, Dang LA, Pham MC (2004) Reagentless amperometric detection of l-lactate on an enzyme-modified conducting copolymer poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-3-thioacetic acid-1,4-naphthoquinone). Biosens Bioelectron 19:1325–1329

    Article  CAS  Google Scholar 

  29. Hu YW, Yang T, Wang XX, Jiao K (2010) Highly sensitive indicator-free impedance sensing of DNA hybridization based on poly(m-aminobenzenesulfonic acid)/TiO2 nanosheet membranes with pulse potentiostatic method preparation. Chem Eur J 16:1992–1999

    Article  CAS  Google Scholar 

  30. Yang T, Meng L, Wang XX, Wang LL, Jiao K (2013) Direct electrochemical DNA detection originated from the self-redox signal of sulfonated polyaniline enhanced by graphene oxide in neutral solution. ACS Appl Mater Interfaces 5:10889–10894

    Article  CAS  Google Scholar 

  31. Li SF, Wang L, Li YJ, Zhu XY, Zhong L, Lu LS, Zhang W, Liu B, Xie GM, Feng WL (2013) Electrochemical determination of BCR/ABL fusion gene based on in situ synthesized gold nanoparticles and cerium dioxide nanoparticle. Colloid Surf B 112:344–349

    Article  CAS  Google Scholar 

  32. Wang L, Hua EH, Liang M, Ma CX, Liu ZL, Sheng SC, Liu M, Xie GM, Feng WL (2014) Graphene sheets, polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Biosens Bioelectron 51:201–207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21205057, 21101087, and 21375057), National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201410452008), Undergraduate Training Program for Innovation and Entrepreneurship of Linyi University (No. 201410452008), and the Doctoral Fund and Scientific Research Project of Linyi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Su, Y. Development of DNA monitoring platform based on poly(xanthurenic acid) functionalized FePt/reduced graphene oxide. J Solid State Electrochem 19, 1285–1291 (2015). https://doi.org/10.1007/s10008-015-2748-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2748-4

Keywords

Navigation