Skip to main content
Log in

Preparation of yolk-shell sulfur/carbon nanocomposite via an organic solvent route for lithium–sulfur batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A yolk-shell sulfur/carbon (S/C) composite for the cathode of lithium–sulfur batteries was successfully prepared by an accessible method with tetrahydrofuran as solvent. The as-prepared composites are characterized by thermal gravimetric, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption and desorption. In this composite, sulfur particle is encapsulated in the carbon shell even entering into the micropores of carbon Bp2000. The electrochemical performance of the S/C composites is evaluated. The results indicate that the S/C composite with 50 wt% sulfur content shows good reversibility, excellent rate capability, and slow degradation. It delivers an initial capacity of 784.4 mAh g−1 (based on sulfur weight) and preserves at 598.3 mAh g−1 after 195 cycles at 1C. It achieves a high-capacity retention of 76.27 % from the 5th to 200th cycle, and as high as 91.19 % during the latter 150 cycles. The improvement is mainly attributed to the favorable structure of the S/C composite, in which the carbon cannot only facilitate transport of electrons and Li+ ions but also trap polysulfides and retard the shuttle effect during charge/discharge process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Su YS, Manthiram A (2012) Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat commun 3:1166–1172

    Article  Google Scholar 

  2. Ahn W, Kim KB, Jung KN, Shin KH, Jin CS (2012) Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J Power Sources 202:394–399

    Article  CAS  Google Scholar 

  3. Sun FG, Wang JT, Chen HC, Qiao WM, Ling LC, Long DH (2013) Bottom-up catalytic approach towards nitrogen-enriched mesoporous carbons/sulfur composites for superior Li-S cathodes. Sci Rep 3:2823–2831

    Google Scholar 

  4. Chen HW, Dong WL, Ge J, Wang CH, Wu XD, Lu W, Chen LW (2013) Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep 3:1910–1916

    CAS  Google Scholar 

  5. Barchasz C, Mesguich F, Dijon J, Leprêtre JC, Patoux S, Alloin F (2012) Novel positive electrode architecture for rechargeable lithium/sulfur batteries. J Power Sources 211:19–26

    Article  CAS  Google Scholar 

  6. Wang DW, Zhou G, Li F, Wu KH, Lu GQ, Cheng HM (2012) A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries. Phys Chem Chem phys 14:8703–8710

    Article  CAS  Google Scholar 

  7. Wang M, Zhang HM, Zhang YN, Li J, Zhang FX, Hu W (2013) A modified hierarchical porous carbon for lithium/sulfur batteries with improved capacity and cycling stability. J Solid State Electrochem 17:2243–2250

    Article  CAS  Google Scholar 

  8. Su YS, Fu Y, Manthiram A (2012) Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys Chem Chem Phys 14:14495–14499

    Article  CAS  Google Scholar 

  9. Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20:9821–9826

    Article  CAS  Google Scholar 

  10. Manthiram A, Fu YZ, Su YS (2013) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46:1125–1134

    Article  CAS  Google Scholar 

  11. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed 50:6026–6030

    Article  Google Scholar 

  12. Yang Y, Zheng GY, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032

    Article  CAS  Google Scholar 

  13. Li L, Li LY, Guo XD, Zhong BH, Chen YX, Tang Y (2013) Synthesis and electrochemical performance of sulfur–carbon composite cathode for lithium–sulfur batteries. J Solid State Electrochem 17:115–119

    Article  CAS  Google Scholar 

  14. Wang C, Wan W, Chen JT, Zhou HH, Zhang XX, Yuan LX (2013) Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J Mater Chem A 1:1716–23

    Article  CAS  Google Scholar 

  15. Zhang B, Lai C, Zhou Z, Gao XP (2009) Preparation and electrochemical properties of sulfur–acetylene black composites as cathode materials. Electrochim Acta 54:3708–3713

    Article  CAS  Google Scholar 

  16. Wang JL, Yang J, Xie JY, Xu NX, Li Y (2002) Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem Commun 4:499–502

    Article  CAS  Google Scholar 

  17. Ryu HS, Park JW, Park J, Ahn JP, Kim KW, Ahn JH (2013) High capacity cathode materials for Li-S batteries. J Mater Chem A 1:1573–1578

    Article  CAS  Google Scholar 

  18. Chen JJ, Jia X, She QJ, Wang C, Zhang Q, Zheng MS, Dong QF (2010) The preparation of nano-sulfur/MWCNTs and its electrochemical performance. Electrochim Acta 55:8062–8066

    Article  CAS  Google Scholar 

  19. Li NW, Zheng MB, Lu HL, Hu ZB, Shen CF, Chang XF (2012) High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating. Chem Commun 48:4106–4108

    Article  CAS  Google Scholar 

  20. Ding B, Yuan CZ, Shen LF, Xu GY, Nie P, Lai QX (2013) Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries. J Mater Chem A 1:1096–1101

    Article  CAS  Google Scholar 

  21. Li KF, Wang B, Su DW, Park J, Ahn H, Wang GX (2012) Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique. J Power Sources 202:389–393

    Article  CAS  Google Scholar 

  22. Liu Y, Zhan H, Zhou Y (2012) Investigation of S/C composite synthesized by solvent exchange method. Electrochim Acta 70:241–247

    Article  CAS  Google Scholar 

  23. Zhang CF, Wu HB, Yuan CZ, Guo ZP, Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem Int Ed 51:9592–9595

    Article  CAS  Google Scholar 

  24. He M, Yuan LX, Zhang WX, Huang YH (2013) Porous carbon nanotubes improved sulfur composite cathode for lithium-sulfur battery. J Solid State Electrochem 17:1641–1647

    Article  CAS  Google Scholar 

  25. Li GC, Hu JJ, Li GR, Ye SH, Gao XP (2013) Sulfur/activated-conductive carbon black composites as cathode materials for lithium/sulfur battery. J Power Sources 240:598–605

    Article  CAS  Google Scholar 

  26. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) Rechargeable lithium sulfur battery. J Electrochem Soc 150:A796–A799

    Article  CAS  Google Scholar 

  27. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater 23:5641–5644

    Article  CAS  Google Scholar 

  28. Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang JG, Schwenzer B, Liu J (2011) Optimization of mesoporous carbon structures for lithium-sulfur battery applications. J Mater Chem 21:16603–16610

    Article  CAS  Google Scholar 

  29. Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115:6057–6063

    Article  CAS  Google Scholar 

  30. Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531–1537

    Article  CAS  Google Scholar 

  31. He M, Yuan LX, Zhang WX, Hu XL, Huang YH (2011) Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J Phys Chem C 115:15703–15709

    Article  CAS  Google Scholar 

  32. Liang X, Liu Y, Wen Z, Huang L, Wang X, Zhang H (2011) A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries. J Power Sources 196:6951–6955

    Article  CAS  Google Scholar 

  33. Wang C, Chen JJ, Shi YN, Zheng MS, Dong QF (2010) Preparation and performance of a core-shell carbon/sulfur material for lithium/sulfur battery. Electrochim Acta 55:7010–7015

    Article  CAS  Google Scholar 

  34. Li GC, Li GR, Ye SH, Gao XP (2012) A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater 2:1238–1245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (2009CB220105), the international cooperation program with Germany (2012DFG61480), the international cooperation program with France (2011DFA70570-4), and The National High Technology Research and Development Program of China (2013AA050901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqiang Shan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 918 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Zhu, K., Tian, J. et al. Preparation of yolk-shell sulfur/carbon nanocomposite via an organic solvent route for lithium–sulfur batteries. J Solid State Electrochem 18, 2077–2085 (2014). https://doi.org/10.1007/s10008-014-2450-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2450-y

Keywords

Navigation