Skip to main content
Log in

Ethylene glycol stabilized NaBH4 reduction for preparation carbon-supported Pt–Co alloy nanoparticles used as oxygen reduction electrocatalysts for microbial fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Three carbon-supported Pt–Co alloys with varying Pt to Co atom ratio (Pt2–Co/C, Pt–Co/C, Pt–Co2/C) were prepared by NaBH4 reduction in ethylene glycol at room temperature. As supported by X-ray diffraction, all the prepared Pt–Co nanoparticles have a single-phase face-centered cubic structure. Transmission electron microscopy indicates that all nanoparticles have small particle-size range and are highly dispersed on carbon support. Catalytic properties of the synthesized Pt–Co alloy catalysts were analyzed using cyclic voltammetry and linear sweep voltammetry methods, and the results suggested that Pt–Co/C catalysts exhibit the best Pt mass activity and the highest stability for the oxygen reduction reaction (ORR) when compared with Pt/C catalyst and other Pt–Co alloy catalyst in both acidic and neutral media. Kinetic analysis reveals that the ORR on Pt–Co alloy follows the four-electron pathway leading to water. As the cathode catalyst, the single-chamber microbial fuel cell tests indicated the much better performance of Pt–Co alloy than that of commercial Pt/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nat 451:652–657

    Article  CAS  Google Scholar 

  2. Wang C, Markovic NM, Stamenkovic VR (2012) Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal 2:891–898

    Article  CAS  Google Scholar 

  3. Wang SY, Yu DS, Dai LM, Chang DW, Baek JB (2011) Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. Acs Nano 5:6202–6209

    Article  CAS  Google Scholar 

  4. Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet JP (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun. doi:10.1038/ncomms1427

    Google Scholar 

  5. Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1:2204–2219

    Article  CAS  Google Scholar 

  6. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nat 486:43–51

    Article  CAS  Google Scholar 

  7. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B-Environ 56:9–35

    Article  CAS  Google Scholar 

  8. Gasteiger HA, Markovic NM (2009) Just a dream-or future reality? Advances in catalyst development offer hope for commercially viable hydrogen fuel cells. Science 324:48–49

    Article  CAS  Google Scholar 

  9. Li WZ, Xin Q, Yan YS (2010) Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: the effect of catalyst composition. Int J Hydrogen Energ 35:2530–2538

    Article  CAS  Google Scholar 

  10. Castro Luna AM, Bonesi A, Triaca WE, Baglio V, Antonucci V, Aricò AS (2008) Pt-Fe cathode catalysts to improve the oxygen reduction reaction and methanol tolerance in direct methanol fuel cells. J Solid State Electrochem 12:643–649

    Article  CAS  Google Scholar 

  11. Guo SJ, Sun SH (2012) FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J Am Chem Soc 134:2492–2495

    Article  CAS  Google Scholar 

  12. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J Phys Chem B 106:4181–4191

    Article  CAS  Google Scholar 

  13. Wanjala BN, Fang B, Loukrakpam R, Chen YS, Engelhard M, Luo J, Yin J, Yang LF, Shan SY, Zhong CJ (2012) Role of metal coordination structures in enhancement of electrocatalytic activity of ternary nanoalloys for oxygen reduction reaction. ACS Catal 2:795–806

    Article  CAS  Google Scholar 

  14. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146:3750–3756

    Article  CAS  Google Scholar 

  15. Carpenter MK, Moylan TE, Kukreja RS, Atwan MH, Tessema MM (2012) Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J Am Chem Soc 134:8535–8542

    Article  CAS  Google Scholar 

  16. Cui CH, Gan L, Heggen M, Rudi S, Strasser P (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12:765–771

    Article  CAS  Google Scholar 

  17. Cui CH, Li HH, Liu XJ, Gao MR, Yu SH (2012) Surface composition and lattice ordering-controlled activity and durability of CuPt electrocatalysts for oxygen reduction reaction. ACS Catal 2:916–924

    Article  CAS  Google Scholar 

  18. Antolini E, Passos RR, Ticianelli EA (2002) Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells. Electrochim Acta 48:263–270

    Article  CAS  Google Scholar 

  19. Rao CV, Reddy ALM, Ishikawa Y, Ajayan PM (2011) Synthesis and electrocatalytic oxygen reduction activity of graphene-supported Pt3Co and Pt3Cr alloy nanoparticles. Carbon 49:931–936

    Article  CAS  Google Scholar 

  20. Huang QH, Yang H, Tang YW, Lu TH, Akins DL (2006) Carbon-supported Pt-Co alloy nanoparticles for oxygen reduction reaction. Electrochem Comm 8:1220–1224

    Article  CAS  Google Scholar 

  21. Wang C, Wang GF, Vliet DV, Chang KC, Markovic NM, Stamenkovic VR (2010) Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys Chem Chem Phys 12:6933–6939

    Article  CAS  Google Scholar 

  22. Oezaslan M, Hasch’e F, Strasser P (2012) Oxygen electroreduction on PtCo3, PtCo and Pt3Co alloy nanoparticles for alkaline and acidic PEM fuel cells. J Electrochem Soc 159:B394–B405

    Article  CAS  Google Scholar 

  23. Wang DL, Xin HL, Hovden R, Wang HS, Yu YC, Muller DA, DiSalvo FJ, Abruña HD (2012) Structurally ordered intermetallic platinum-cobaltcore-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12:81–87

    Article  Google Scholar 

  24. Tsuji M, Hashimoto M, Nishizawa Y, Tsuji T (2004) Synthesis of gold nanorods and nanowires by a microwaveepolyol method. Mater Lett 58:2326–2330

    Article  CAS  Google Scholar 

  25. Guo JS, Sun GQ, Sun SG, Yan SY, Yang WQ, Qi J, Yan YS, Xin Q (2007) Polyol-synthesized PtRu/C and PtRu black for direct methanol fuel cells. J Power Sources 168:299–306

    Article  CAS  Google Scholar 

  26. Lee WD, Lim DH, Chun HJ, Lee HI (2012) Preparation of Pt nanoparticles on carbon support using modified polyol reduction for low-temperature fuel cells. Int J Hydrogen Energ 37:12629–12638

    Article  CAS  Google Scholar 

  27. He W, Jiang HJ, Zhou Y, Yang SD, Xue XZ, Zou ZQ, Zhang XG, Akins DL, Yang H (2012) An efficient reduction route for the production of Pd-Pt nanoparticles anchored on graphene nanosheets for use as durable oxygen reduction electrocatalysts. Carbon 50:265–274

    Article  CAS  Google Scholar 

  28. Lebègue E, Baranton S, Coutanceau C (2011) Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation. J Power Sources 196:920–927

    Article  Google Scholar 

  29. Yuan Y, Ahmed J, Kim S (2011) Polyaniline/carbon black composite-supported iron phthalocyanine as an oxygen reduction catalyst for microbial fuel cells. J Power Sources 196:1103–1106

    Article  CAS  Google Scholar 

  30. Kim P, Joo JB, Kim W, Kim J, Song IK, Yi J (2006) NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J Power Sources 160:987–990

    Article  CAS  Google Scholar 

  31. Bal LJ, Gao LJ, Conway BE (1993) Problem of in situ real-area determination in evaluation of performance of rough or porous, gas-evolving electrocatalysts. J Chem Soc Faraday Trans 89:235–242

    Article  Google Scholar 

  32. Feng YJ, Yang Q, Wang X, Logan BE (2010) Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J Power Sources 195:1841–1844

    Article  CAS  Google Scholar 

  33. Lovley DR, Phillips EJ (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microb 54:1472–1480

    CAS  Google Scholar 

  34. Cheng SA, Liu H, Logan BE (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494

    Article  CAS  Google Scholar 

  35. Thygesen A, Poulsen FW, Angelidaki I, Min B, Bjerre A (2011) Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate. Biomass bioenergy 35:4732–4739

    Article  CAS  Google Scholar 

  36. Lee C, Chiou H, Wu S, Wu C (2010) Alloy ratio effect of Pd/Pt nanoparticles on carbon nanotubes for catalysing methanol-tolerant oxygen reduction. Electrochim Acta 56:687–692

    Article  CAS  Google Scholar 

  37. Venkateswar RC, Viswanathan B (2009) ORR activity and direct ethanol fuel cell performance of carbon-supported Pt-M (M = Fe, Co, and Cr) alloys prepared by polyol reduction method. J Phys Chem C 113:18907–18913

    Article  Google Scholar 

  38. Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J Phys Chem B 109:14433–14440

    Article  CAS  Google Scholar 

  39. Shao MH, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11:3714–3719

    Article  CAS  Google Scholar 

  40. Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, Markovic NM (2005) The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J Am Chem Soc 127:6819–6829

    Article  CAS  Google Scholar 

  41. Jahan M, Bao QL, Loh KP (2012) Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J Am Chem Soc 134:6707–6713

    Article  CAS  Google Scholar 

  42. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  43. Li X, Hu B, Sui S, Lei Y, Li B (2010) Manganese dioxide as a new cathode catalyst in microbial fuel cells. J Power Sources 195:2586–2591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially support by the National Natural Science Foundation of China (31170110, 20906043), the promotive research fund for young and middle-aged scientists of Shandong Province (2009BSB01453), the Natural Science Foundation of Shandong Province (ZR2010BQ009, ZR2011EL002) and the China Postdoctoral Science Foundation (2013 M530397).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renmin Liu or Jinsheng Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 978 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Wang, M., Lu, Y. et al. Ethylene glycol stabilized NaBH4 reduction for preparation carbon-supported Pt–Co alloy nanoparticles used as oxygen reduction electrocatalysts for microbial fuel cells. J Solid State Electrochem 18, 1087–1097 (2014). https://doi.org/10.1007/s10008-013-2361-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2361-3

Keywords

Navigation