Skip to main content
Log in

Pristine and graphitized-MWCNTs as durable cathode-catalyst supports for PEFCs

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Long-term deterioration in the performance of PEFCs is attributed largely to reduction in active area of the platinum catalyst at cathode, usually caused by carbon-support corrosion. Multi-walled carbon-nanotubes (MWCNTs) as cathode-catalyst support are found to enhance long-term stability of platinum catalyst (Pt) in relation to non-graphitic carbon. In addition, highly graphitic MWCNTs (G-MWCNTs) are found to be electrochemically more stable than pristine MWCNTs. This is because graphitic-carbon-supported-Pt (Pt/MWCNTs) cathodes exhibit higher resistance to carbon corrosion in-relation to non-graphitic-carbon-supported-Pt (Pt/C) cathodes in PEFCs during accelerated stress-test (AST) as evidenced by chronoamperometry and carbon dioxide studies. The corresponding change in electrochemical surface area (ESA), cell performance, and charge-transfer resistance are monitored through cyclic voltammetry, cell polarization, and impedance measurements, respectively. The extent of crystallinity, namely amorphous or graphitic nature of the three supports, is examined by Raman spectroscopy. X-ray diffraction and transmission electron microscopy studies both prior and after AST suggest lesser deformation in catalyst layer and catalyst particles for Pt/G-MWCNTs and Pt/MWCNTs cathodes in relation to Pt/C cathodes, reflecting that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt particles. It is also found that with increasing degree of graphitization, the electrochemical stability for MWCNTs increases due to the lesser surface defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bagotzky VS, Skundin AM (1984) Electrocatalysts on support-I. Electrochemical and adsorptive properties of platinum microdeposits on inert supports. Electrochim Acta 29:757–765

    Article  Google Scholar 

  2. Bagotzky VS, Skundin AM (1984) Electrocatalysts on support-II. Comparison of platinum microdeposits on inert supports with other binary systems. Electrochim Acta 29:951–956

    Article  Google Scholar 

  3. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88:1–24

    Article  CAS  Google Scholar 

  4. Kangasniemi KH, Condit DA, Jarvi TD (2004) Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions. J Electrochem Soc 151:E125–E132

    Article  CAS  Google Scholar 

  5. Stevens DA, Dahn JR (2005) Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 43:179–188

    Article  CAS  Google Scholar 

  6. Reiser CR, Bregoli L, Pattersin TW, Yi JS, Yang JD, Perry ML, Jarvi TD (2005) A Reverse-Current Decay Mechanism for Fuel Cells. Electrochem Solid-State Lett 8:A273–A276

    Article  CAS  Google Scholar 

  7. Wang X, Li W, Chen Z, Waje M, Yan Y (2006) Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 158:154–159

    Article  CAS  Google Scholar 

  8. Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C (2008) Carbon support oxidation in PEM fuel cell cathodes. J Power Sources 176:444–451

    Article  CAS  Google Scholar 

  9. Ball SC, Hudson SL, Thompsett D, Theobald B (2007) An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures. J Power Sources 171:18–25

    Article  CAS  Google Scholar 

  10. Tang H, Qi Z, Ramani M, Elter JF (2006) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J Power Sources 158:1306–1312

    Article  CAS  Google Scholar 

  11. Wilson MS, Garzon HG, Sickafus KE, Gottesfeld S (1993) Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells. J Electrochem Soc 140:2872–2877

    Article  CAS  Google Scholar 

  12. Stevens DA, Hicks MT, Haugen GM, Dahn JR (2005) Ex Situ and In Situ Stability Studies of PEMFC Catalysts : Effect of Carbon Type and Humidification on Degradation of the Carbon. J Electrochem Soc 152:A2309–A2315

    Article  CAS  Google Scholar 

  13. Shao Y, Yin G, Gao Y (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J Power Sources 171:558–566

    Article  CAS  Google Scholar 

  14. Kang M, Bae YS, Lee CH (2005) Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst. Carbon 43:1512–1516

    Article  CAS  Google Scholar 

  15. Knights SD, Colbow KM, Pierre J, St WDP (2004) Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources 127:127–134

    Article  CAS  Google Scholar 

  16. Roen LM, Paik CH, Jarvic TD (2004) Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes. Electrochem Solid-State Lett 7:A19–A22

    Article  CAS  Google Scholar 

  17. Shanahan PV, Xu L, Liang C, Waje M, Dai S, Yan YS (2008) Graphitic mesoporous carbon as a durable fuel cell catalyst support. J Power Sources 185:423–427

    Article  CAS  Google Scholar 

  18. Avasarala B, Moore R, Haldar P (2010) Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions. Electrochim Acta 55:4765–4771

    Article  CAS  Google Scholar 

  19. Shao YY, Yin GP, Gao YZ, Shi PF (2006) Durability study of PtC and PtCNTs catalysts under simulated PEM fuel cell conditions. J Electrochem Soc 153:A1093–A1097

    Article  CAS  Google Scholar 

  20. Shao YY, Yin GP, Zhang J, Gao YZ (2006) Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution. Electrochim Acta 51:5853–5857

    Article  CAS  Google Scholar 

  21. Coloma F, Sepulvedaescribano A, Rodriguezreinoso F (1995) Heat-Treated Carbon-Blacks as Supports for Platinum Catalysts. J Catal 154:299–305

    Article  CAS  Google Scholar 

  22. Guilminot E, Corcella A, Charlot F, Maillard F, Chatenet M (2007) Detection of Ptz+ Ions and Pt Nanoparticles Inside the Membrane of a Used PEMFC. J Electrochem Soc 154:B96–B105

    Article  CAS  Google Scholar 

  23. He C, Desai S, Brown G, Bollepalli S (2005) PEM Fuel Cell Catalysts: Cost, Performance, and Durability. Interface 14:41–44

    CAS  Google Scholar 

  24. Rao V, Simonov PA, Savinova ER, Plaksin GV, Cherepanova SV, Kryukova GN, Stimming U (2005) The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation. J Power Sources 145:178–187

    Article  CAS  Google Scholar 

  25. Lim KH, Oh HS, Kim H (2009) Use of a carbon nanocage as a catalyst support in polymer electrolyte membrane fuel cells. Electrochem Commun 11:1131–1134

    Article  CAS  Google Scholar 

  26. Li L, Xing Y (2006) Electrochemical Durability of Carbon Nanotubes in Noncatalyzed and Catalyzed Oxidations. J Electrochem Soc 153:A1823–A1828

    Article  CAS  Google Scholar 

  27. Wang C, Waje M, Wang X, Tang JM, Haddon TC, Yan Y (2004) Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes. Nano Lett 4:345–348

    Article  CAS  Google Scholar 

  28. Ye S, Hall M, He P (2008) PEM Fuel Cell Catalysts: The Importance of Catalyst Support. ECS Trans 16(2):2101–2113

    Article  CAS  Google Scholar 

  29. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal 253:337–358

    Article  CAS  Google Scholar 

  30. Wang J, Yin G, Shao Y, Wang Z, Gao Y (2008) Electrochemical durability investigation of single-walled and multi-walled carbon nanotubes under potentiostatic conditions. J Power Sources 176:128–131

    Article  CAS  Google Scholar 

  31. Tang Z, Poh CK, Lee KK, Tian Z, Chua DHC, Lin J (2010) Enhanced catalytic properties from platinum nanodots covered carbon nanotubes for proton-exchange membrane fuel cells. J Power Sources 195:155–159

    Article  CAS  Google Scholar 

  32. Tuaev X, Paraknowitsch JP, Illegen R, Thomas A, Strasser P (2012) Nitrogen-doped coatings on carbon nanotubes and their stabilizing effect on Pt nanoparticles. Phys Chem Chem Phys 14:6444

    Article  Google Scholar 

  33. Jung J, Park B, Kim J (2012) Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC. Nanoscale Res Lett 7(34):1–8

    Google Scholar 

  34. Jafri RI, Arockiados T, Rajalakshmi N, Ramaprabhu S (2006) Nanostructured Pt Dispersed on Graphene-Multiwalled Carbon Nanotube Hybrid Nanomaterials as Electrocatalyst for PEMFC. J Electrochem Soc 157:B874–B879

    Article  Google Scholar 

  35. Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes. Nature 391:62–64

    Article  CAS  Google Scholar 

  36. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kitrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE (2002) Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science 297:593–596

    Article  Google Scholar 

  37. Avouris P (2002) Molecular Electronics With Carbon Nanotubes. Acc Chem Res 35:1026–1034

    Article  CAS  Google Scholar 

  38. Baughman RH, Zakhodov AA, De Heer WA (2002) Carbon Nanotubes-the Route Toward Applications. Science 297:787–792

    Article  CAS  Google Scholar 

  39. Iijima S (1991) Helical microtubules of graphitic carbon. Science 354:56–58

    CAS  Google Scholar 

  40. Steen E, Prinsloo FF (2002) Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts. Catal Today 71:327–334

    Article  Google Scholar 

  41. Chen S, Wei Z, Guo L, Ding W, Dong L, Shen P, Qi X, Li L (2011) Enhanced dispersion and durability of Pt nanoparticles on a thiolated CNT support. Chem Commun 47:10984–10986

    Article  CAS  Google Scholar 

  42. Zhou Y, Neyerlin K, Olson TS, Pylypenko S, Bult J, Dinh HN, Gennett T, Shao Z, O’Hayre R (2010) Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci 3:1437–1446

    Article  CAS  Google Scholar 

  43. Lin JF, Adame A, Kannan AM (2010) Development of Durable Platinum Nanocatalyst on Carbon Nanotubes for Proton Exchange Membrane Fuel Cells. J Electrochem Soc 157:B846–B851

    Article  CAS  Google Scholar 

  44. Kinoshita K, Bett JAS (1973) Potentiodynamic analysis of surface oxides on carbon blacks. Carbon 11:403–411

    Article  CAS  Google Scholar 

  45. Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CJ, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Interface Electrochem Soc 14:24–35

    CAS  Google Scholar 

  46. Du B, Guo Q, Pollard R, Rotriguez D, Smith C, Elter J (2006) PEM fuel cells: status and challenges for commercial stationary power applications. J Miner Met Mater Soc 58:45–49

    Article  CAS  Google Scholar 

  47. Wei Z, Guo H, Tang Z (1996) Heat treatment of carbon-based powders carrying platinum alloy catalysts for oxygen reduction: influence on corrosion resistance and particle size. J Power Sources 62:233–236

    Article  CAS  Google Scholar 

  48. Antonucci PL, Romeo F, Minutoli M, Alderucci E, Giordano N (1988) Electrochemical corrosion behavior of carbon black in phosphoric acid. Carbon 26:197–203

    Article  CAS  Google Scholar 

  49. Cherstiouk OV, Simonov AN, Moseva NS, Cherepanova SV, Simonov PA, Zaikovskii VI, Savinova ER (2010) Microstructure effects on the electrochemical corrosion of carbon materials and carbon-supported Pt catalysts. Electrochim Acta 55:8453–8460

    Article  CAS  Google Scholar 

  50. Jörissen L, Lehnert W, Garche J, Tillmetz W (2007) Lifetime of PEMFCs. Mater Sci Forum 539–543:1303–1308

    Article  Google Scholar 

  51. US DOE (2007) Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells

  52. Xing Y (2004) Synthesis and Electrochemical Characterization of Uniformly-Dispersed High Loading Pt Nanoparticles on Sonochemically-Treated Carbon Nanotubes. J Phys Chem B 108:19255–19259

    Article  CAS  Google Scholar 

  53. Selvarani G, Vinod Selvaganesh S, Krishnamurthy S, Kiruthika GVM, Sridhar P, Pitchumani S, Shukla AK (2009) A Methanol-Tolerant Carbon-Supported Pt-Au Alloy Cathode Catalyst for Direct Methanol Fuel Cells and Its Evaluation by DFT. J Phys Chem C 113:7461–7468

    Article  CAS  Google Scholar 

  54. Selvarani G, Sahu AK, Choudhury NA, Sridhar P, Pitchumani S, Shukla AK (2007) A Phenyl Sulfonic Acid Anchored Carbon Supported Platinum Catalyst For Polymer Electrolyte Fuel Cell Electrodes. Electrochim Acta 52:4871–4877

    Article  CAS  Google Scholar 

  55. Kannan R, Pillai VK (2009) Applications of carbon nanotubes in polymer electrolyte membrane fuel cells. J Indian Inst Sci 89:425–436

    CAS  Google Scholar 

  56. Long D, Li W, Qiao W, Miyawaki J, Yoon SH, Mochida I, Ling L (2011) Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells. Chem Commun 47:9429–9431

    Article  CAS  Google Scholar 

  57. Sheng W, Lee SW, Crumlin EJ, Chen S, Horn YS (2011) Synthesis, Activity and Durability of Pt Nanoparticles Supported on Multi-walled Carbon Nanotubes for Oxygen Reduction. J Electrochem Soc 158:B1398–B1404

    Article  CAS  Google Scholar 

  58. Bessel CA, Laubernds K, Rodriguez N, Baker R (2001) Graphite Nanofibers as an Electrode for Fuel Cell Applications. J Phys Chem 105:1115–1118

    Article  CAS  Google Scholar 

  59. Kinoshita K, Lundquis JT, Stonehart P (1973) Potential cycling effects on platinum electrocatalyst surfaces. J Electroanal Chem Interfacial Electrochem 48:157–166

    Article  CAS  Google Scholar 

  60. Selvarani G, Sahu AK, Kiruthika GVM, Sridhar P, Pitchumani S, Shukla AK (2009) PEFC Electrode With Enhanced Three-Phase Contact and Built-In Supercapacitive Behavior. J Electrochem Soc 156:B118–B125

    Article  CAS  Google Scholar 

  61. Wang J, Yin G, Shao Y, Wang Z, Gao Y (2008) Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support. J Phys Chem C 112:5784–5789

    Article  CAS  Google Scholar 

  62. Walker PL Jr, Rakszawski JF, Amington AF (1995) ASTM Bull 208:51

    Google Scholar 

  63. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43:1731–1742

    Article  CAS  Google Scholar 

  64. Wang Y, Alsmeyer DC, McCreery RL (1990) Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra. Chem Mater 2:557–563

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from CSIR, New Delhi through New Millennium Indian Technology Leadership Initiative programme is gratefully acknowledged. Authors thank Dr. K. Vijayamohanan Pillai, Director, CSIR-CECRI for his constant encouragement and A. Rathishkumar for taking TEM images. S. Vinod Selvaganesh gratefully acknowledges MNRE, New Delhi, for a Senior Research Fellowship under their National Renewable Energy Fellowship (NREF) Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sridhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvaganesh, S.V., Sridhar, P., Pitchumani, S. et al. Pristine and graphitized-MWCNTs as durable cathode-catalyst supports for PEFCs. J Solid State Electrochem 18, 1291–1305 (2014). https://doi.org/10.1007/s10008-013-2317-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2317-7

Keywords

Navigation