Skip to main content
Log in

Structure and electrochemical performance of LiFePO4 cathode materials modified with carbon coating and metal doping

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiFePO4 cathode material is considered as a competitive material for lithium-ion battery, but its poor electronic and ionic conductivity hinder its further commercial application. Carbon nanotubes are considered as one of the most promising carbon materials to improve the electrochemical performance of LiFePO4. However, they have poor dispersion in solution due to the high van der Waals forces, which makes it impossible to take full advantage of carbon nanotubes. In order to improve the dispersibility, phthalocyanine functionalized carbon nanotubes were prepared and used to improve the electrochemical performance of LiFePO4. In this work, four kinds of LiFePO4 cathode materials modified with phthalocyanine functionalized carbon nanotubes were prepared via mechanical milling method with subsequent calcination. The effect of different metals, carbon contents, structures and modification methods on the properties of LiFePO4/C composites was investigated by XRD, ICP-AES, FTIR, SEM, TEM, EIS, CV and charge–discharge tests. In addition, the modification ability of pure carbon nanotubes was compared. The results indicate that metal phthalocyanine functionalized carbon nanotubes can simultaneously achieve carbon coating and ion doping to further improve electrochemical performance of LiFePO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gong C, Xue Z, Wen S, Ye Y, Xie X (2016) Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. J Power Sources 318:93–112

    Article  CAS  Google Scholar 

  2. Satyavani TVSL, Srinivas Kumar A, Subba Rao PSV (2016) Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review. Eng Sci Technol an Int J 19(1):178–188

    Article  Google Scholar 

  3. Yang J, Wang J, Tang Y, Wang D, Li X, Hu Y, Li R, Liang G, Sham T-K, Sun X (2013) LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. Energy Environ Sci 6(5):1521–1528

    Article  CAS  Google Scholar 

  4. Ziolkowska D, Korona KP, Hamankiewicz B, Wu S-H, Chen M-S, Jasinski JB, Kaminska M, Czerwinski A (2013) The role of SnO2 surface coating on the electrochemical performance of LiFePO4 cathode materials. Electrochim Acta 108:532–539

    Article  CAS  Google Scholar 

  5. Tao Y, Cao Y, Hu G, Chen P, Peng Z, Du K, Jia M, Huang Y, Xia J, Li L, Xie X (2019) Effects of vanadium oxide coating on the performance of LiFePO4/C cathode for lithium-ion batteries. J Solid State Electrochem 23(7):2243–2250

    Article  CAS  Google Scholar 

  6. Li C, Hua N, Wang C, Kang X, Tuerdi W, Han Y (2011) Effect of Mn2+-doping in LiFePO4 and the low temperature electrochemical performances. J Alloy Compd 509(5):1897–1900

    Article  CAS  Google Scholar 

  7. Shin HC, Park SB, Jang H, Chung KY, Cho WI, Kim CS, Cho BW (2008) Rate performance and structural change of Cr-doped LiFePO4/C during cycling. Electrochim Acta 53(27):7946–7951

    Article  CAS  Google Scholar 

  8. Li X, Shao Z, Liu K, Zhao Q, Liu G, Xu B (2018) Effect of F-doping on the properties of LiFePO4-x/3Fx/C cathode materials via wet mechanical agitation-assisted high-temperature ball milling method. J Solid State Electrochem 22(9):2837–2843

    Article  CAS  Google Scholar 

  9. Li X, Shao Z, Liu K, Zhao Q, Liu G, Xu B (2018) Enhancement of Nb-doping on the properties of LiFePO4/C prepared via a high-temperature ball milling–based method. J Solid State Electrochem 23(2):465–473

    Article  Google Scholar 

  10. Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew Chemie International Edition 47(39):7461–7465

    Article  CAS  Google Scholar 

  11. Zhao Y, Peng L, Liu B, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett 14(5):2849–2853

    Article  CAS  PubMed  Google Scholar 

  12. Shah A, Zahid A, Subhan H, Munir A, Iftikhar FJ, Akbar M (2018) Heteroatom-doped carbonaceous electrode materials for high performance energy storage devices. Sustainable Energy Fuels 2(7):1398–1429

    Article  CAS  Google Scholar 

  13. Jiang L, Cheng X-B, Peng H-J, Huang J-Q, Zhang Q (2019) Carbon materials for traffic power battery. ETransportation 2:100033

    Article  Google Scholar 

  14. Pedico A, Lamberti A, Gigot A, Fontana M, Bella F, Rivolo P, Cocuzza M, Pirri CF (2018) High-performing and stable wearable supercapacitor exploiting rGO aerogel decorated with copper and molybdenum sulfides on carbon fibers. ACS Applied Energy Materials 1(9):4440–4447

    Article  CAS  Google Scholar 

  15. Warren R, Sammoura F, Tounsi F, Sanghadasa M, Lin L (2015) Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications. J Mater Chem 3(30):15568–15575

    Article  CAS  Google Scholar 

  16. Zhang H, Zhang F, Wei Y, Miao Q, Li A, Zhao Y, Yuan Y, Jin N, Li G (2021) Controllable design and preparation of hollow carbon-based nanotubes for asymmetric supercapacitors and capacitive deionization. ACS Appl Mater Interfaces 13(18):21217–21230

    Article  CAS  PubMed  Google Scholar 

  17. Amiri A, Bashandeh K, Naraghi M, Polycarpou AA (2021) All-solid-state supercapacitors based on yarns of Co3O4-anchored porous carbon nanofibers. Chem Eng J 409:128124

    Article  CAS  Google Scholar 

  18. Fernando N, Veldhuizen H, Nagai A, van der Zwaag S, Abdelkader A (2021) Layer-by-layer electrode fabrication for improved performance of porous polyimide-based supercapacitors. Materials 15(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barzegar F, Pavlenko V, Zahid M, Bello A, Xia X, Manyala N, Ozoemena KI, Abbas Q (2021) Tuning the nanoporous structure of carbons derived from the composite of cross-linked polymers for charge storage applications. ACS Appl Energy Mater 4(2):1763–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cougnon C, Lebègue E, Pognon G (2015) Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor. J Power Sources 274:551–559

    Article  CAS  Google Scholar 

  21. Lefrançois Perreault L, Colò F, Meligrana G, Kim K, Fiorilli S, Bella F, Nair JR, Vitale-Brovarone C, Florek J, Kleitz F, Gerbaldi C (2018) Spray-dried mesoporous mixed Cu-Ni oxide@graphene nanocomposite microspheres for high power and durable Li-ion battery anodes. Adv Energy Mater 8(35):1802438

    Article  Google Scholar 

  22. Jiang Y, Du M, Cheng G, Gao P, Dong T, Zhou J, Feng X, He Z, Li Y, Dai L, Meng W, Wang L (2021) Nanostructured N-doped carbon materials derived from expandable biomass with superior electrocatalytic performance towards V2+/V3+ redox reaction for vanadium redox flow battery. J Energy Chem 59:706–714

    Article  Google Scholar 

  23. Zolin L, Nair JR, Beneventi D, Bella F, Destro M, Jagdale P, Cannavaro I, Tagliaferro A, Chaussy D, Geobaldo F, Gerbaldi C (2016) A simple route toward next-gen green energy storage concept by nanofibres-based self-supporting electrodes and a solid polymeric design. Carbon 107:811–822

    Article  CAS  Google Scholar 

  24. Cong R, Choi J-Y, Song J-B, Jo M, Lee H, Lee C-S (2021) Characteristics and electrochemical performances of silicon/carbon nanofiber/graphene composite films as anode materials for binder-free lithium-ion batteries. Sci Rep 11(1):1–11

    Article  Google Scholar 

  25. Scalia A, Bella F, Lamberti A, Gerbaldi C, Tresso E (2019) Innovative multipolymer electrolyte membrane designed by oxygen inhibited UV-crosslinking enables solid-state in plane integration of energy conversion and storage devices. Energy 166:789–795

    Article  CAS  Google Scholar 

  26. Chen J, Zou Y-C, Zhang F, Zhang Y-C, Guo F-F, Li G-D (2013) Superior electrode performance of LiFePO4/C composite prepared by an in situ polymerization restriction method. J Alloy Compd 563:264–268

    Article  CAS  Google Scholar 

  27. Feng S, Shen W, Guo S (2017) Effects of polypyrrole and chemically reduced graphene oxide on electrochemical properties of lithium iron (II) phosphate. J Solid State Electrochem 21(10):3021–3028

    Article  CAS  Google Scholar 

  28. Huynh LTN, Tran TTD, Nguyen HHA, Nguyen TTT, Tran VM, Grag A, Le MLP (2018) Carbon-coated LiFePO4-carbon nanotube electrodes for high-rate Li-ion battery. J Solid State Electrochem 22(7):2247–2254

    Article  CAS  Google Scholar 

  29. Wang B, Al Abdulla W, Wang D, Zhao XS (2015) A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8(3):869–875

    Article  CAS  Google Scholar 

  30. Wang X, Feng Z, Huang J, Deng W, Li X, Zhang H, Wen Z (2018) Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries. Carbon 127:149–157

    Article  CAS  Google Scholar 

  31. Jegal J-P, Kim K-B (2013) Carbon nanotube-embedding LiFePO4 as a cathode material for high rate lithium ion batteries. J Power Sources 243:859–864

    Article  CAS  Google Scholar 

  32. Zhou Y, Wang J, Hu Y, O’Hayre R, Shao Z (2010) A porous LiFePO4 and carbon nanotube composite. Chem Commun (Camb) 46(38):7151–7153

    Article  CAS  Google Scholar 

  33. He L, Zha W, Chen D (2019) Fabrication and electrochemical properties of 3D nano-network LiFePO4@multiwalled carbon nanotube composite using risedronic acid as the phosphorus source. Progress in Natural Science: Materials International 29(2):156–162

    Article  CAS  Google Scholar 

  34. Kavan L, Bacsa R, Tunckol M, Serp P, Zakeeruddin SM, Le Formal F, Zukalova M, Graetzel M (2010) Multi-walled carbon nanotubes functionalized by carboxylic groups: activation of TiO2 (anatase) and phosphate olivines (LiMnPO4; LiFePO4) for electrochemical Li-storage. J Power Sources 195(16):5360–5369

    Article  CAS  Google Scholar 

  35. Gong C, Xue Z, Wang X, Zhou X-P, Xie X-L, Mai Y-W (2014) Poly(ethylene glycol) grafted multi-walled carbon nanotubes/LiFePO4 composite cathodes for lithium ion batteries. J Power Sources 246:260–268

    Article  CAS  Google Scholar 

  36. Wu SX, Chiang CL, Wang CC, Chen CY (2018) Functionalization of MWCNTs by plasma treatment and use as conductive additives for LiFePO4 electrode. J Taiwan Inst Chem Eng 89:208–214

    Article  CAS  Google Scholar 

  37. Chiang C-L, Wang C-C, Chen C-Y (2018) Carbon nanotubes functionalized with maleic anhydride chelated silver nanoparticles as conductive additives for polyanion-based lithium-ion batteries. Mater Sci Eng, B 238–239:42–49

    Article  Google Scholar 

  38. Nouri E, Krishna JVS, Kumar CV, Dracopoulos V, Giribabu L, Mohammadi MR, Lianos P (2016) Soluble tetratriphenylamine Zn phthalocyanine as hole transporting material for perovskite solar cells. Electrochim Acta 222:875–880

    Article  CAS  Google Scholar 

  39. Zhang F, Yang X, Cheng M, Wang W, Sun L (2016) Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy 20:108–116

    Article  CAS  Google Scholar 

  40. Wang R, Zhang R, Xu B, Yang F, Zhao J, Zhang S, Wang J (2015) Metal tetrabromophthalocyanines mediate the structure and electrochemical performance of lithium iron phosphate as cathode materials for lithium-ion batteries. J Electroanal Chem 755:47–51

    Article  CAS  Google Scholar 

  41. Wang R, Zhang R, Xu B, Yang F, Zhao J, Zhang S, Wang J (2015) Highly improving the electrochemical performance of LiFePO4 modified by metal phthalocyanines as cathode materials. J Mater Res 30(5):645–653

    Article  CAS  Google Scholar 

  42. Xu F, Wang R, Zhang R, Zhao J (2017) Structure and electrochemical performance of LiFePO4 modified with mononuclear and binuclear phthalocyanines as cathode materials. J Mater Res 32(6):1168–1176

    Article  CAS  Google Scholar 

  43. Su Y, Xu F, Wang R, Zhang R, Zhao J (2018) Microstructure and electrochemical performance of LiFePO4 cathode materials modified with binuclear metal aminophthalocyanines. J Porphyrins Phthalocyanines 22(12):1072–1081

    Article  CAS  Google Scholar 

  44. Gao Y, Li S, Wang X, Zhang R, Zhang G, Zheng Y, Zhao J (2017) Carbon nanotubes chemically modified by metal phthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery. J Electrochem Soc 164(6):A1140–A1147

    Article  CAS  Google Scholar 

  45. Liu Z, Gao R, Jiang Q, Zhang R, Zhao J, Wang J (2016) Excellent electrocatalytic activity of binuclear phthalocyanines in the electrolyte of lithium/thionyl chloride battery. J Electrochem Soc 163(8):A1503–A1511

    Article  CAS  Google Scholar 

  46. Gao Y, Li S, Wang X, Zhang R, Zhang G, Zheng Y, Zhao J (2017) Binuclear metal phthalocyanines bonding with carbon nanotubes as catalyst for the Li/SOCl2 battery. J Electroanal Chem 791:75–82

    Article  CAS  Google Scholar 

  47. Hamid NA, Wennig S, Heinzel A, Schulz C, Wiggers H (2015) Influence of carbon content, particle size, and partial manganese substitution on the electrochemical performance of LiFexMn1-xPO4/carbon composites. Ionics 21(7):1857–1866

    Article  CAS  Google Scholar 

  48. Malik R, Burch D, Bazant M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10(10):4123–4127

    Article  CAS  PubMed  Google Scholar 

  49. Wang L, He X, Sun W, Wang J, Li Y, Fan S (2012) Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Lett 12(11):5632–5636

    Article  CAS  PubMed  Google Scholar 

  50. Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 17(20):5085–5092

    Article  CAS  Google Scholar 

  51. Park K-Y, Park I, Kim H, Lim H-d, Hong J, Kim J, Kang K (2014) Anti-site reordering in LiFePO4: defect annihilation on charge carrier injection. Chem Mater 26(18):5345–5351

    Article  CAS  Google Scholar 

  52. Kim M-S, Jegal J-P, Roh KC, Kim K-B (2014) Synthesis of LiMn0.75Fe0.25PO4/C microspheres using a microwave-assisted process with a complexing agent for high-rate lithium ion batteries. J Mater Chem A 2 (27):10607–10613

  53. Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8):2581–2602

    Article  CAS  Google Scholar 

  54. Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus M (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60(3):413–550

    Article  CAS  Google Scholar 

  55. Xia Y, Zhang W, Huang H, Gan Y, Xiao Z, Qian L, Tao X (2011) Biotemplating of phosphate hierarchical rechargeable LiFePO4/C spirulina microstructures. J Mater Chem 21(18):6498–6501

    Article  CAS  Google Scholar 

  56. Jinli Z, Jiao W, Yuanyuan L, Ning N, Junjie G, Feng Y, Wei L (2015) High-performance lithium iron phosphate with phosphorus-doped carbon layers for lithium ion batteries. J Mater Chem A 3(5):2043–2049

    Article  Google Scholar 

  57. Li C, Li G, Guan X (2018) Synthesis and electrochemical performance of micro-nano structured LiFe1−xMnxPO4/C (0 ≤x ≤ 0.05) cathode for lithium-ion batteries. J Energy Chem 27 (3):923–929

  58. Jin B, Jin EM, Park K-H, Gu H-B (2008) Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochem Commun 10(10):1537–1540

    Article  CAS  Google Scholar 

  59. Ma X, Li Q, Zhang Y, Wang W, Guo Y, Zhang C (2020) Facile synthesis of polymeric Schiff base metal complex as electrode for high-performance supercapacitors. J Electrochem Soc 167(9):090544

    Article  CAS  Google Scholar 

  60. Scipioni R, Jørgensen PS, Ngo D-T, Simonsen SB, Liu Z, Yakal-Kremski KJ, Wang H, Hjelm J, Norby P, Barnett SA, Jensen SH (2016) Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodes. J Power Sources 307:259–269

    Article  CAS  Google Scholar 

  61. Qiao YQ, Feng WL, Li J, Shen TD (2017) Ultralong cycling stability of carbon-nanotube/LiFePO4 nanocomposites as electrode materials for lithium-ion batteries. Electrochim Acta 232:323–331

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the Key Research and Development Projects of Shaanxi Province (No. 2022GY-375) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronglan Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 924 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, R., Xu, F. et al. Structure and electrochemical performance of LiFePO4 cathode materials modified with carbon coating and metal doping. J Solid State Electrochem 26, 1655–1665 (2022). https://doi.org/10.1007/s10008-022-05198-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05198-8

Keywords

Navigation