Skip to main content
Log in

Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Activated nitrogen-doped carbons (ANCs) were prepared by carbonization/activation approach using aminated polyvinyl chloride (PVC) as precursor. ANCs exhibit larger porosities and higher specific surface areas than those of their nitrogen-free counterparts for the same KOH/carbon ratio. The specific surface area of ANC-1 is up to 1,398 m2 g−1 even at a low KOH/carbon ratio of 1:1. Fourier transform infrared spectroscopy investigation of the nitrogen-enriched resin precursor indicates the efficient dehydrochlorination of PVC by ethylenediamine at a low temperature. The nitrogen content and the population of nitrogen functionalities strongly depend on the KOH/carbon ratios and decrease drastically after KOH activation as seen from the elemental and X-ray photoelectron spectroscopy analysis. The surface concentration of N-6 and N-Q almost disappears and the dominant nitrogen groups become N-5 after KOH activation. The highest specific capacitance of ANCs is up to 345 F g−1 at a current density of 50 mA g−1 in 6 M KOH electrolyte. ANCs also exhibit a good capacitive behavior at a high scan rate of 200 mV s−1 and an excellent cyclability with a capacitance retention ratio as high as ∼93 % at a current density of 2,000 mA g−1 for 5,000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  3. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  4. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19:438–447

    Article  CAS  Google Scholar 

  5. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785

    Article  CAS  Google Scholar 

  6. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  7. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  8. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  9. Jurewicz K, Babeł K, Źiółkowski A, Wachowska H (2003) Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim Acta 48:1491–1498

    Article  CAS  Google Scholar 

  10. Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Supercapacitors prepared from melamine-based carbon. Chem Mater 17:1241–1247

    Article  CAS  Google Scholar 

  11. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao SY, Antonietti M, Titirici MM (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22:5202–5206

    Article  CAS  Google Scholar 

  12. Qiao WM, Yoon SH, Mochida I, Yang JH (2007) Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers. Waste Manage 27:1884–1890

    Article  CAS  Google Scholar 

  13. Lingaiah N, Uddin MA, Morikawa K, Muto A, Murata K, Sakata Y (2001) Catalytic dehydrochlorination of chloro-organic compounds from PVC containing waste plastics derived fuel oil over FeCl2/SiO2 catalyst. Green Chem 3:74–75

    Article  CAS  Google Scholar 

  14. Ahmad Z, Manzoor W (1992) Thermogravimetric analysis of ZnCl2 catalyzed degradation of PVC. J Therm Anal Calorim 38:2349–2357

    Article  Google Scholar 

  15. McNeill IC, Memetea L, Cole WJ (1995) A study of the products of PVC thermal degradation. Polym Degrad Stabil 49:181–191

    Article  CAS  Google Scholar 

  16. Dietrich B (2002) Recycling of PVC. Prog Polym Sci 27:2171–2195

    Article  Google Scholar 

  17. Iguchi K, Tsunoda R, Takeshit S (1974) Preparation of activated carbon from polyvinyl-chloride. Int Chem Eng 14:381–385

    Google Scholar 

  18. Qiao WM, Song Y, Yoon SH, Korai Y, Mochida I, Yoshiga S, Fukuda H, Yamazaki A (2006) Carbonization of waste PVC to develop porous carbon material without further activation. Waste Manage 26:592–598

    Article  CAS  Google Scholar 

  19. Lian F, Xing BS, Zhu LY (2011) Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers. J Colloid Interface Sci 360:725–730

    Article  CAS  Google Scholar 

  20. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493

    Article  CAS  Google Scholar 

  21. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  Google Scholar 

  22. Fey GTK, Lee DC, Lin YY, Kumar TP (2003) High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials. Synthetic Met 139:71–80

    Article  CAS  Google Scholar 

  23. Bonhomme F, Lassègues JC, Servant L (2001) Raman spectroelectrochemistry of a carbon supercapacitor. J Electrochem Soc 148:E450–E458

    Article  CAS  Google Scholar 

  24. Muraliganth T, Stroukoff KR, Manthiram A (2010) Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22:5754–5761

    Article  CAS  Google Scholar 

  25. Lozano-Castelló D, Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2001) Preparation of activated carbons from Spanish anthracite I. Activation by KOH Carbon 39:741–749

    Google Scholar 

  26. Alonso A, Ruiz V, Blanco C, Santamaría R, Granda M, Menéndez R, de Jager SGE (2006) Activated carbon produced from Sasol-Lurgi gasifier pitch and its application as electrodes in supercapacitors. Carbon 44:441–446

    Article  CAS  Google Scholar 

  27. Kryazhev YG, Solodovnichenko VS, Antonicheva NV, Gulyaeva TI, Drozdov VA, Likholobov VA (2009) Evolution of the structures and sorption properties of dehydrochlorinated chloropolymers during their thermal conversions. Prot Met Phys Chem 45:398–402

    Article  CAS  Google Scholar 

  28. Mitani S, Lee SI, Yoon SH, Korai Y, Mochida I (2004) Activation of raw pitch coke with alkali hydroxide to prepare high performance carbon for electric double layer capacitor. J Power Sources 133:298–301

    Article  CAS  Google Scholar 

  29. Jiang J, Gao Q, Xia K, Hu J (2009) Enhanced electrical capacitance of porous carbons by nitrogen enrichment and control of the pore structure. Micropor Mesopor Mater 118:28–34

    Article  CAS  Google Scholar 

  30. Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2003) Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41:267–275

    Article  Google Scholar 

  31. Zeng XH, Wu DC, Fu RW, Lai HJ, Fu JJ (2008) Preparation and electrochemical properties of pitch-based activated carbon aerogels. Electrochim Acta 53:5711–5715

    Article  CAS  Google Scholar 

  32. Xue R, Shen Z (2003) Formation of graphite-potassium intercalation compounds during activation of MCMB with KOH. Carbon 41:1862–1864

    Article  CAS  Google Scholar 

  33. Kakuta N, Shimizu A, Ohkita H, Mizushima T (2009) Dehydrochlorination behavior of polyvinyl chloride and utilization of carbon residue: effect of plasticizer and inorganic filler. J Mater Cycles Waste 11:23–26

    Article  CAS  Google Scholar 

  34. Hong J-H, Hong S-K (2010) Preparation of anion exchange membrane by amination of chlorinated polypropylene and ethylenediamine and its properties. J Appl Polym Sci 115:2296–2301

    Article  CAS  Google Scholar 

  35. Balakrishnan B, Kumar DS, Yoshida Y, Jayakrishnan A (2005) Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials 26:3495–3502

    Article  CAS  Google Scholar 

  36. Demir-Cakan R, Makowski P, Antonietti M, Goettmann F, Titirici M-M (2010) Hydrothermal synthesis of imidazole functionalized carbon spheres and their application in catalysis. Catal Today 150:115–118

    Article  CAS  Google Scholar 

  37. Biniak S, Szymański G, Śiedlewski J, Swiatkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35:1799–1810

    Article  CAS  Google Scholar 

  38. Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641–1653

    Article  CAS  Google Scholar 

  39. László K, Tombácz E, Josepovits K (2001) Effect of activation on the surface chemistry of carbons from polymer precursors. Carbon 39:1217–1228

    Article  Google Scholar 

  40. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem 120:379–382

    Article  Google Scholar 

  41. Moriguchi I, Nakahara F, Furukawa H, Yamada H, Kudo T (2004) Colloidal crystal-templated porous carbon as a high performance electrical double-layer capacitor material. Electrochem Solid St 7:A221–A223

    Article  CAS  Google Scholar 

  42. Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ (2008) Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun 10:1594–1597

    Article  CAS  Google Scholar 

  43. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195:912–918

    Article  CAS  Google Scholar 

  44. Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507

    Article  Google Scholar 

  45. Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46:1475–1488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 20836002, 21003016, and 21276045), the Dalian Science and Technology Bureau of China (no. 2011A15GX023), and China Postdoctoral Science Foundation (no. 20100481227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhou or Jieshan Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Wang, C., Zhou, Y. et al. Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors. J Solid State Electrochem 18, 49–58 (2014). https://doi.org/10.1007/s10008-013-2227-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2227-8

Keywords

Navigation