Skip to main content

Advertisement

Log in

One pot synthesis of nitrogen-doped hierarchical porous carbon derived from phenolic formaldehyde resin with sodium citrate as activation agent for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nitrogen-doped hierarchical porous carbon materials were simply prepared from phenolic formaldehyde resin using sodium citrate as activation agent and hexamethylenetetramine as nitrogen source. The hierarchical porous structure of the obtained carbon samples is helpful for ion transport and greatly promote the capacitance properties of the carbon materials. The physical and chemical properties tests show that the as-prepared materials have characteristics of amorphous carbons. The low-temperature N2 sorption experiment shows that the maximum BET specific area of the as-prepared samples can be up to 1256 m2 g−1, with an ideal hierarchical porous structure comprised of a large number of micropores and a certain amount of mesopores and macropores. X-ray photoelectron spectroscopy demonstrates the NHPCs have high doping (1.56–6.19 wt%) and oxygen content (6.43–11.88 at.%). Benefitting from both the high specific surface area and distinct hierarchical porous structure, the obtained samples exhibit excellent electrochemical performances when used as electrode materials. The optimal sample exhibits a high specific capacitance (CSP) of 261 F g−1 at a 0.05 A g−1, with a good rate capability of 71% (185 F g−1 at 20 A g−1). The carbon material also shows an excellent long cycle stability (98% capacitance retention after 5000 cycles). All results indicate that the work sheds light on the technological innovation in carbon materials for energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.-J. Huang, L. Wang, J.-Z. Zhang, K. Xing, Synthesis of molybdenum disulfide/carbon aerogel composites for supercapacitors electrode material application. J. Electroanal. Chem. 752, 33–40 (2015)

    Article  Google Scholar 

  2. Y. Zhang, B.L. Tao, W. Xing, L. Zhang, Q.Z. Xue, Z.F. Yan, Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance. Nanoscale 8(15), 7889–7898 (2016)

    Article  Google Scholar 

  3. A.H. Rahman, M.S. Majid, A. Rezaee Jordehi, G. Chin Kim, M.Y. Hassan, O.S. Fadhl, Operation and control strategies of integrated distributed energy resources: a review. Renew. Sustain. Energy Rev. 51, 1412–1420 (2015)

    Article  Google Scholar 

  4. K.M. Zhao, K.Z. Lyu, S.Q. Liu, Q.M. Gan, Z. He, Z. Zhou, Ordered porous Mn3O4@N-doped carbon/graphene hybrids derived from metal-organic frameworks for supercapacitor electrodes. J. Mater. Sci. 52(1), 446–457 (2017)

    Article  Google Scholar 

  5. G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)

    Article  Google Scholar 

  6. Y.J. Li, G.L. Wang, T. Wei, Z.J. Fan, P. Yan, Nitrogenandsulfurco-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)

    Article  Google Scholar 

  7. Z.S. Wu, W.C. Ren, D.W. Wang, W. Li, B.L. Liu, H.M. Chen, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4(10), 5835–5842 (2010)

    Article  Google Scholar 

  8. X. Du, X.G. Hao, Z.D. Wang, G.Q. Guan, Electroactive ion exchange materials: current status in synthesis, applications and future prospects. J. Mater. Chem. A 4(17), 6236–6258 (2016)

    Article  Google Scholar 

  9. J.E. Zuliani, J.N. Caguiat, D.W. Kirk, C.Q. Jia, Considerations for consistent characterization of electrochemical double-layer capacitor performance. J. Power Sources 290, 136–143 (2015)

    Article  Google Scholar 

  10. S. Chen, W. Xing, J.J. Duan, X.J. Hu, S.Z. Qiao, Nanostructured morphology control for efficient supercapacitor electrodes. J. Mater. Chem. A 1(9), 2941–2954 (2013) (2013)

    Article  Google Scholar 

  11. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ.Sci. 7(5), 1597–1614 (2014)

    Article  Google Scholar 

  12. M. Li, J.P. Cheng, F. Liu, X.B. Zhang, In situ growth of nickel-cobalt oxyhydroxide/oxide on carbon nanotubes for high performance supercapacitors. Electrochim. Acta 178, 439–446 (2015)

    Article  Google Scholar 

  13. X. Li, B.Q. Wei, Supercapacitors based on nanostructured carbon. Nano Energy 2(2), 159–173 (2013)

    Article  Google Scholar 

  14. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Z. Zhou, Y. Yang, Highly mesoporous and high surface area carbon: a high capacitance electrode material for EDLCs with various electrolytes. Electrochem. Commun 10(5), 795–797 (2008)

    Article  Google Scholar 

  15. H.R. Wang, S.K. Yu, B. Xu, Hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors. ChemComm 52(77), 11512–11515 (2016)

    Google Scholar 

  16. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hiercrchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47(2), 373–376 (2008)

    Article  Google Scholar 

  17. K.P. Gierszal, M. Jaroniec, C.D. Liang, S. Dai, Electron microscopy and nitrogen adsorption studies of film-type carbon replicas with large pore volume synthesized by using colloidal silica and SBA-15 as templates. Carbon 45(11), 2171–2177 (2007)

    Article  Google Scholar 

  18. A. Siyasukh, P. Maneeprom, S. Larpkiattaworn, N. Tonanon, W. Tanthapanichakoon, H. Tamon, T. Charinpanitkul, Preparation of a carbon monolith with hierarchical porous structure by ultrasonic irradiation followed by carbonization, physical and chemical activation. Carbon 46(10), 1309–1315 (2008)

    Article  Google Scholar 

  19. Y. Su, I. Zhitomirsky, Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes. Appl. Energy 153, 48–55 (2015)

    Article  Google Scholar 

  20. M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46(11), 1475–1488 (2008)

    Article  Google Scholar 

  21. K. Jurewicz, K. Babeł, A. Źiółkowski, H. Wachowska, Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim. Acta 48(11), 1491–1498 (2003)

    Article  Google Scholar 

  22. W. Si, J. Zhou, S. Zhang, S. Li, W. Xing, S. Zhuo, Tunable N-doped or dual N, S doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim. Acta 107(3), 397–405 (2013)

    Article  Google Scholar 

  23. J.H. Hou, C.B. Cao, F. Idrees, X.L. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3), 2556–2564 (2015)

    Article  Google Scholar 

  24. D. Hulicova, J. Yamashita, Y. Soneda, H. Hatori, M. Kodama, Supercapacitors prepared from melamine-based carbon. Chem. Mater. 17(5), 1241–1247 (2005)

    Article  Google Scholar 

  25. R. Song, H. Song, X. Chen, Y. Cui, J. Zhou, S. Zhang, Effects of copper nitrate addition on the pore property and lithium storage performance of hierarchical porous carbon nanosheets from phenolic resin. Electrochim. Acta 127, 186–192 (2014)

    Article  Google Scholar 

  26. T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z.H. Zhu, G.Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J. Power Sources 195(3), 915–918 (2010)

    Article  Google Scholar 

  27. F.B. Su, C.K. Poh, J.S. Chen, G.W. Xu, D. Wang, Q. Li, J.Y. Lin, X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4(3), 717–724 (2011)

    Article  Google Scholar 

  28. Y. Fan, P.-F. Liu, Z.-J. Yang, T.-W. Jiang, K.-L. Yao, R. Han, X.-X. Huo, Y.-Y. Xiong, Bi-functional porous carbon spheres derived from pectin as electrode material for supercapacitors and support material for Pt nanowires towards electrocatalytic methanol and ethanol oxidation. Electrochim. Acta 163, 140–148 (2015)

    Article  Google Scholar 

  29. G. Tao, L. Zhang, L. Chen, X. Cui, Z. Hua, M. Wang, J.C. Wang, Y. Chen, J.L. Shi, N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon 86, 108–117 (2015)

    Article  Google Scholar 

  30. S.L. Candelaria, B.B. Garcia, D.W. Liu, G.Z. Cao, Nitrogen modification of highly porous carbon for improved supercapacitor performance. J. Mater. Chem. 22(19), 9884–9889 (2012)

    Article  Google Scholar 

  31. J.L. Zhang, W.F. Zhang, H. Zhang, J. Pang, G.P. Cao, M.F. Han, Y.S. Yang, Facile preparation of water soluble phenol formaldehyde resin-derived activated carbon by Na2CO3 activation for high performance supercapacitors. Mater. Lett. 206, 67–70 (2017)

    Article  Google Scholar 

  32. J. Pang, W.F. Zhang, J.L. Zhang, G.P. Cao, M.F. Han, Y.S. Yang, Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities. Green Chem. 19(16), 3916–3926 (2017)

    Article  Google Scholar 

  33. L. Zhao, L.Z. Fan, M.Q. Zhou, H. Guan, S. Qiao, M. Antonietti, M.M. Titirici, Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv. Mater. 22, 5202–5206 (2010)

    Article  Google Scholar 

  34. X.Y. Chen, C. Chen, Z.J. Zhang, D.H. Xie, X. Deng, J.W. Liu, Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J. Power Sources 230, 50–58 (2013)

    Article  Google Scholar 

  35. Y. Wang, B. Chang, D. Guan, X. Dong, Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. J. Solid State Electrochem. 19(6), 1783–1791 (2015)

    Article  Google Scholar 

  36. J.R. Pels, F. Kapteijn, J.A. Moulijn, Q. Zhu, K.M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33(11), 1641–1653 (1995)

    Article  Google Scholar 

  37. Y.L. Wang, H.Q. Xuan, G.X. Lin, F. Wang, Z. Chen, X.P. Dong, A melamine-assisted chemical blowing synthesis of N-doped activated carbon sheets for supercapacitor application. J. Power Sources 319, 262–270 (2016)

    Article  Google Scholar 

  38. S. Wang, J. Zhang, P. Shang, Y. Li, Z. Chen, Q. Xu, N-doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors. Chem. Commun. 50(81), 12091–12094 (2014)

    Article  Google Scholar 

  39. D.D. Zhang, J.H. Zhao, C. Feng, R.J. Zhao, Y.H. Sun, T.T. Guan, B.X. Han, N. Tang, J.L. Wang, K.X. Li, J.L. Qiao, J.J. Zhang, Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors. J. Power Sources 342, 363–370 (2016)

    Article  Google Scholar 

  40. H. Liu, H. Song, X. Chen, S. Zhang, J. Zhou, Z. Ma, Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. J. Power Sources 285, 303–309 (2015)

    Article  Google Scholar 

  41. J.A. Arlin, J.K. Sun, Q. Xu, From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chem. Commun. 50(13), 1519–1522 (2014)

    Article  Google Scholar 

  42. S.K. Yu, H.R. Wang, C. Hu, Q.Z. Zhu, N. Qiao, B. Xu, Facile synthesis of nitrogen-doped, hierarchical porous carbon with high surface area: activation effect of nano-ZnO template. J. Mater. Chem. A 4(42), 16341–16348 (2016)

    Article  Google Scholar 

  43. M. Seredych, M. Koscinski, M. Sliwinska-Bartkowiak, T.J. Bandosz, Charge storage accessibility factor as a parameter determining the capacitive performance of nanoporous carbon-based supercapacitors. ACS Sustain. Chem. Eng. 1(8), 1024–1032 (2013)

    Article  Google Scholar 

  44. J.Q. Shao, F.W. Ma, G. Wu, C.C. Dai, W.D. Geng, S.J. Song, J.F. Wan, In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem. Eng. J. 321, 301–313 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 51572147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, W., Han, M. et al. One pot synthesis of nitrogen-doped hierarchical porous carbon derived from phenolic formaldehyde resin with sodium citrate as activation agent for supercapacitors. J Mater Sci: Mater Electron 29, 4639–4648 (2018). https://doi.org/10.1007/s10854-017-8415-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8415-z

Navigation