Skip to main content
Log in

An XPS depth-profile study on electrochemically deposited TaO x

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Through the use of XPS and controlled Ar+ etching, the surface composition and oxide species of tantalum oxides (TaO x ), which were electrodeposited on glassy carbon electrodes by cyclic voltammetric and constant-potential electrolyses, are quantified along the depth profile. Electrodeposition exhibits efficacy in depositing TaO x with a distribution of various TaO x : TaO, TaO2, and Ta2O5. The distribution gradient from the outer surface of TaO x is such that Ta2O5 > TaO2 > TaO. TaO is found to be the dominant species in the underlying layer of TaO x . Such a unique structure of the electrode surface is analogous to that of nanoparticles with a core–shell structure, with the core being suboxides and the surface being that of the saturated pentoxide, Ta2O5. The electrochemically induced nonhydrolytic condensation route is proposed to be capable of producing TaO x with a distribution gradient of Ta2O5, TaO2, and TaO in the depth direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Oh T, Kim JY, Shin Y, Engelhard M, Weil KS (2011) Effects of tungsten oxide addition on the electrochemical performance of nanoscale tantalum oxide-based electrocatalysts for proton exchange membrane (PEM) fuel cells. J Power Sources 196(15):6099–6103

    Article  CAS  Google Scholar 

  2. Kim JY, Oh T-K, Shin Y, Bonnett J, Weil KS (2011) A novel non-platinum group electrocatalyst for PEM fuel cell application. Int J Hydrogen Energy 36(7):4557–4564

    Article  CAS  Google Scholar 

  3. Ushikubo T (2000) Recent topics of research and development of catalysis by niobium and tantalum oxides. Catal Today 57(3–4):331–338

    Article  CAS  Google Scholar 

  4. Chen Y, Fierro JLG, Tanaka T, Wachs IE (2003) Supported tantalum oxide catalysts: synthesis, physical characterization, and methanol oxidation chemical probe reaction. J Phys Chem B 107(22):5243–5250

    Article  CAS  Google Scholar 

  5. Baturina OA, Garsany Y, Zega TJ, Stroud RM, Schull T, Swider-Lyons KE (2008) Oxygen reduction reaction on platinum/tantalum oxide electrocatalysts for PEM fuel cells. J Electrochem Soc 155(12):B1314–B1321

    Article  CAS  Google Scholar 

  6. Garsany Y, Epshteyn A, Purdy AP, More KL, Swider-Lyons KE (2010) High-activity, durable oxygen reduction electrocatalyst: nanoscale composite of platinum−tantalum oxyphosphate on vulcan carbon. J Phys Chem Lett 1(13):1977–1981

    Article  CAS  Google Scholar 

  7. Awaludin Z, Suzuki M, Masud J, Okajima T, Ohsaka T (2011) Enhanced electrocatalysis of oxygen reduction on Pt/TaO x /GC. J Phys Chem C 115(51):25557–25567

    Article  CAS  Google Scholar 

  8. Ferdousi BN, Mominul Islam M, Okajima T, Mao L, Ohsaka T (2010) Enhanced catalytic reduction of oxygen at tantalum deposited platinum electrode. Chem Commun 46(7):1165–1167

    Article  CAS  Google Scholar 

  9. Masud J, Alam MT, Awaludin Z, El-Deab MS, Okajima T, Ohsaka T (2012) Electrocatalytic oxidation of methanol at tantalum oxide-modified Pt electrodes. J Power Sources 220:399–404

    Article  CAS  Google Scholar 

  10. Korovina A, Garsany Y, Epshteyn A, Purdy AP, More K, Swider-Lyons KE, Ramaker DE (2012) Understanding oxygen reduction on tantalum oxyphosphate and tantalum oxide supported platinum by X-ray absorption spectroscopy. J Phys Chem C 116(34):18175–18183

    Article  CAS  Google Scholar 

  11. Seo J, Cha D, Takanabe K, Kubota J, Domen K (2012) Highly-dispersed Ta-oxide catalysts prepared by electrodeposition in a non-aqueous plating bath for polymer electrolyte fuel cell cathodes. Chem Commun 48(72):9074–9076

    Article  CAS  Google Scholar 

  12. Ishihara A, Tamura M, Matsuzawa K, Mitsushima S, Ota K (2010) Tantalum oxide-based compounds as new non-noble cathodes for polymer electrolyte fuel cell. Electrochim Acta 55(26):7581–7589

    Article  CAS  Google Scholar 

  13. Xiao L, Huang B, Zhuang L, Lu J (2011) Optimization strategy for fuel-cell catalysts based on electronic effects. RSC Advances 1(7):1358–1363

    Article  CAS  Google Scholar 

  14. Kukli K, Ritala M, Leskelä M (2000) Atomic layer deposition and chemical vapor deposition of tantalum oxide by successive and simultaneous pulsing of tantalum ethoxide and tantalum chloride. Chem Mat 12(7):1914–1920

    Article  CAS  Google Scholar 

  15. Shin Y, Kim JY, Wang C, Bonnet JF, Scott Weil K (2009) Controlled deposition of covalently bonded tantalum oxide on carbon supports by solvent evaporation sol–gel process. Surf Sci 603(15):2290–2293

    Article  CAS  Google Scholar 

  16. Li Q, Liang C, Tian Z, Zhang J, Zhang H, Cai W (2012) Core–shell Ta x O@Ta2O5 structured nanoparticles: laser ablation synthesis in liquid, structure and photocatalytic property. CrystEngComm 14(9):3236–3240

    Article  CAS  Google Scholar 

  17. Ishihara A, Doi S, Mitsushima S, Ota K (2008) Tantalum (oxy)nitrides prepared using reactive sputtering for new nonplatinum cathodes of polymer electrolyte fuel cell. Electrochim Acta 53(16):5442–5450

    Article  CAS  Google Scholar 

  18. Díaz B, Światowska J, Maurice V, Pisarek M, Seyeux A, Zanna S, Tervakangas S, Kolehmainen J, Marcus P (2012) Chromium and tantalum oxide nanocoatings prepared by filtered cathodic arc deposition for corrosion protection of carbon steel. Surf Coat Tech 206(19–20):3903–3910

    Article  Google Scholar 

  19. Díaz B, Światowska J, Maurice V, Seyeux A, Härkönen E, Ritala M, Tervakangas S, Kolehmainen J, Marcus P (2013) Tantalum oxide nanocoatings prepared by atomic layer and filtered cathodic arc deposition for corrosion protection of steel: comparative surface and electrochemical analysis. Electrochim Acta 90:232–245

    Article  Google Scholar 

  20. Suzuki TM, Nakamura T, Saeki S, Matsuoka Y, Tanaka H, Yano K, Kajino T, Morikawa T (2012) Visible light-sensitive mesoporous N-doped Ta2O5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO2 reduction. J Mater Chem 22(47):24584–24590

    Article  CAS  Google Scholar 

  21. Macagno V, Schultze JW (1984) The growth and properties of thin oxide layers on tantalum electrodes. J Electroanal Chem 180(1–2):157–170

    CAS  Google Scholar 

  22. Wang K, Liu Z, Cruz TH, Salmeron M, Liang H (2010) In situ spectroscopic observation of activation and transformation of tantalum suboxides. J Phys Chem A 114(7):2489–2497

    Article  CAS  Google Scholar 

  23. Sanz JM, Hofmann S (1983) Auger electron spectroscopy and X-ray photoelectron spectroscopy studies of the oxidation of polycrystalline tantalum and niobium at room temperature and low oxygen pressures. J Less Common Met 92(2):317–327

    Article  CAS  Google Scholar 

  24. Himpsel FJ, Morar JF, McFeely FR, Pollak RA, Hollinger G (1984) Core-level shifts and oxidation states of Ta and W: Electron spectroscopy for chemical analysis applied to surfaces. Phys Rev B 30(12):7236–7241

    Article  CAS  Google Scholar 

  25. Khanuja M, Sharma H, Mehta BR, Shivaprasad SM (2009) XPS depth-profile of the suboxide distribution at the native oxide/Ta interface. J Electron Spectrosc Relat Phenom 169(1):41–45

    Article  CAS  Google Scholar 

  26. Lecuyer S, Quemerais A, Jezequel G (1992) Composition of natural oxide films on polycrystalline tantalum using XPS electron take-off angle experiments. Surf Inter Anal 18(4):257–261

    Article  CAS  Google Scholar 

  27. Kerrec O, Devilliers D, Groult H, Marcus P (1998) Study of dry and electrogenerated Ta2O5 and Ta/Ta2O5/Pt structures by XPS. Mat Sci Eng B 55(1–2):134–142

    Article  Google Scholar 

  28. Klendworth DD, Walton RA (1981) Complex halides of the transition metals. 29. Synthesis, characterization, and electrochemistry of tertiary phosphine complexes of niobium and tantalum halide clusters. Inorg Chem 20(4):1151–1155

    Article  CAS  Google Scholar 

  29. Bursten BE, Green MR, Katovic V, Kirk JR, Lightner D (1986) Electrochemistry of niobium(IV) and tantalum(IV) complexes: ligand additivity in d1 octahedral complexes. Inorg Chem 25(6):831–834

    Article  CAS  Google Scholar 

  30. Babushkina OB, Ekres S (2010) Spectroscopic study of the electrochemical behaviour of tantalum(V) chloride and oxochloride species in 1-butyl-1-methylpyrrolidinium chloride. Electrochim Acta 56(2):867–877

    Article  CAS  Google Scholar 

  31. Ispas A, Adolphi B, Bund A, Endres F (2010) On the electrodeposition of tantalum from three different ionic liquids with the bis(trifluoromethyl sulfonyl) amide anion. Phys Chem Chem Phys 12(8):1793–1803

    Article  CAS  Google Scholar 

  32. Hofmann S, Sanz JM (1982–1983) Quantitative XPS analysis of the surface layer of anodic oxides obtained during depth profiling by sputtering with 3 keV Ar+ ions. J Trace Microprobe Tech 1 (3):213–264

    Google Scholar 

  33. Masud J, Alam MT, Miah MR, Okajima T, Ohsaka T (2011) Enhanced electrooxidation of formic acid at Ta2O5-modified Pt electrode. Electrochem Commun 13(1):86–89

    Article  CAS  Google Scholar 

  34. Mitchell DF, Sproule GI, Graham MJ (1990) Sputter reduction of oxides by ion bombardment during Auger depth profile analysis. Surf Inter Anal 15(8):487–497

    Article  CAS  Google Scholar 

  35. Oh MH, Lee N, Kim H, Park SP, Piao Y, Lee J, Jun SW, Moon WK, Choi SH, Hyeon T (2011) Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J Am Chem Soc 133(14):5508–5515

    Article  CAS  Google Scholar 

  36. Vioux A (1997) Nonhydrolytic sol–gel routes to oxides. Chem Mat 9(11):2292–2299

    Article  CAS  Google Scholar 

  37. Corriu R, Leclercq D, Lefevre P, Mutin PH, Vioux A (1992) Preparation of monolithic binary oxide gels by a nonhydrolytic sol–gel process. Chem Mater 4(5):961–963

    Article  CAS  Google Scholar 

  38. Corriu RJP, Leclercq D, Lefevre P, Mutin PH, Vioux A (1992) Materials chemistry communications. Preparation of monolithic metal oxide gels by a non-hydrolytic sol–gel process. J Mater Chem 2(6):673–674

    Article  CAS  Google Scholar 

  39. Corriu RJP, Leclercq D, Lefèvre P, Mutin PH, Vioux A (1992) Preparation of monolithic gels from silicon halides by a non-hydrolytic sol–gel process. J Non-Cryst Solids 146:301–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by Grant-in-Aid for Scientific Research (A) (number 19206079) to T.O. from the Ministry of Education, Culture, Sport, Science and Technology (MEXT), Japan. J. G. S. M and Z. A gratefully acknowledge the Government of Japan for MEXT Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Ohsaka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moo, J.G.S., Awaludin, Z., Okajima, T. et al. An XPS depth-profile study on electrochemically deposited TaO x . J Solid State Electrochem 17, 3115–3123 (2013). https://doi.org/10.1007/s10008-013-2216-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2216-y

Keywords

Navigation