Skip to main content
Log in

Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper studies the effect of H2O and NH4F content on morphology and barrier layer properties of TiO2 nanotubes grown by potentiostatic anodization in ethylene glycol-based electrolytes. The increase in these two variables leads to an increase in the chemical attack of the formed oxide. However, each of these variables plays a different role in the formation of TiO2 nanotubes. On the one hand, a higher percentage of H2O in the electrolyte leads to a transition from a nanoporous to a nanotubular structure, as well as to a greater diameter of the tubes and a decrease in their length and barrier layer thickness. In contrast, a higher NH4F concentration decreases nanotube diameter and increases their length modifying barrier layer properties due to insertion of F ions into the lattice. This diminishes the barrier layer resistance, but increases both the adsorption and the diffusion coefficient of F ions. The different roles of H2O and NH4F in film formation are also associated with the presence of sub-oxides detected by XPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Surf Interface Anal 27:629–637

    Article  CAS  Google Scholar 

  2. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331–3334

    Article  CAS  Google Scholar 

  3. Mahajan VK, Misra M, Raja KS, Mohapatra SK (2008) J Phys D 41:125307

    Article  Google Scholar 

  4. Allam NK, Shankar K, Grimes CA (2008) J Mater Chem 18:2341–2348

    Article  CAS  Google Scholar 

  5. Roy P, Berger S, Schmuki P (2011) Angew Chem Int Ed 50:2904–2939

    Article  CAS  Google Scholar 

  6. Sang LX, Zhang ZY, Ma CF (2011) Int J Hydrogen Energy 36:4732–4738

    Article  CAS  Google Scholar 

  7. Liang S, He J, Sun Z, Liu Q, Jiang Y, Cheng H, He B, Xie Z, Wei S (2012) J Phys Chem C 116:9049–9053

    Article  CAS  Google Scholar 

  8. Kong D-S, Zhang X-D, Wang J, Wang C, Zhao X, Feng Y-Y, Li W-J (2013) J Solid State Electrochem 17:69–77

    Article  CAS  Google Scholar 

  9. Zhang Z, Wang PE (2013) Environ Sci 5:6506–6512

    Google Scholar 

  10. Acevedo-Peña P, González I (2013) J Electrochem Soc 160:H452–H458

    Article  Google Scholar 

  11. Yin Y, Jin Z, Hou F, Wang X (2007) J Am Ceram Soc 90:2384–2389

    Article  CAS  Google Scholar 

  12. Hassan FMB, Nanjo H, Tetsuka H, Kanakubo M, Aizawa T, Nishioka M, Ebina T, Bond AM (2009) J Electrochem Soc 156:K227–K232

    Article  CAS  Google Scholar 

  13. Valota A, LeClere DJ, Skeldon P, Curioni M, Hashimoto T, Berger S, Kunze J, Schmuki P, Thompson GE (2009) Electrochim Acta 54:4321–4327

    Article  CAS  Google Scholar 

  14. Berger S, Kunze J, Schmuki P, Valota AT, Leclere DJ, Skeldon P, Thompson GE (2010) J Electrochem Soc 157:C18–C23

    Article  CAS  Google Scholar 

  15. Chen C-C, Hsieh S-J (2010) J Electrochem Soc 157125-K130

  16. Albu SP, Roy P, Virtanen S, Schmuki P (2010) Isr J Chem 50:453–467

    Article  CAS  Google Scholar 

  17. Oyarzún DP, Córdova R, Linárez-Pérez OE, Muñoz E, Henríquez R, López-Teijelo M, Gómez H (2011) J Solid State Electrochem 15:2265–2275

    Article  Google Scholar 

  18. Antony RP, Mathews T, Dash S, Tyagi AK, Raj B (2012) Mater Chem Phys 132:957–966

    Article  CAS  Google Scholar 

  19. Kojima R, Kimura Y, Bitoh M, Abe M, Niwano M (2012) J Electrochem Soc 159:D629–D636

    Article  CAS  Google Scholar 

  20. Regonini D, Satka A, Jaroenworaluck A, Allsopp DWE, Stevens R (2012) Electrochim Acta 74:244–253

    Article  CAS  Google Scholar 

  21. Albu SP, Schmuki P (2013) Electrochim Acta 91:90–95

    Article  CAS  Google Scholar 

  22. Yin L, Ji S, Liu G, Xu G, Ye C (2011) Electrochem Commun 13:454–457

    Article  CAS  Google Scholar 

  23. Kong D-S (2008) Langmuir 24:4880–4891

    Google Scholar 

  24. Acevedo-Peña P, González I (2011) ECS Trans 36:257–265

    Article  Google Scholar 

  25. Acevedo-Peña P, González I (2012) J Electrochem Soc 159:C101–C108

    Article  Google Scholar 

  26. Acevedo-Peña P, González I (2012) J Solid State Electrochem 16:2709–2715

    Article  Google Scholar 

  27. Stancheva M, Bojinov M (2012) Electrochim Acta 78:65–74

    Article  CAS  Google Scholar 

  28. Acevedo-Peña P, Valdez D, González I (2013) J Electrochem Soc 160:C247–C252

    Article  Google Scholar 

  29. Acevedo-Peña P, Lartundo-Rojas L, González I (2013) J Electrochem Soc 160:C291–C297

    Article  Google Scholar 

  30. Stancheva M, Bojinov M (2013) J Solid State Electrochem 17:1271–1283

    Article  CAS  Google Scholar 

  31. Acevedo-Peña P, Vázquez G, Laverde D, Pedraza-Rosas JE, González I (2010) J Solid State Electrochem 14:757–767

    Article  Google Scholar 

  32. Carley AF, Chalker PR, Riviere JC, Roberts MW (1987) J Chem Soc Faraday Trans I 83:351–370

    Article  CAS  Google Scholar 

  33. Siemensmeyer B, Schultze JW (1990) Surf Interface Anal 16:309–314

    Article  CAS  Google Scholar 

  34. Wolff M, Schultze JW, Strehblow H-H (1991) Surf Interface Anal 17:726–736

    Article  CAS  Google Scholar 

  35. da Fonseca C, Boudin S, da Cunha BM (1994) J Electroanal Chem 379:173–180

    Article  Google Scholar 

  36. Poullieau J, Devillers D, Garrido F, Durand-Vidal S, Mahé E (1997) Mater Sci Eng B 47:235–243

    Article  Google Scholar 

  37. Kurtz RL, Henrich VE (1998) Surf Sci Spectra 5:179–181

    Article  CAS  Google Scholar 

  38. Milošev I, Metikoš-Huković M, Strehblow H-H (2000) Biomater 21:2103–2113

    Article  Google Scholar 

  39. Ibrahim MAM, Pongkao D, Yoshimura M (2002) J Solid State Electrochem 6:341–350

    Article  CAS  Google Scholar 

  40. Huang YZ, Blackwood DJ (2005) Electrochim Acta 51:1099–1107

    Article  CAS  Google Scholar 

  41. Xia Z, Nanjo H, Aizawa T, Kanakubo M, Fujimura M, Onagawa J (2007) Surf Sci 601:5133–5141

    Article  CAS  Google Scholar 

  42. Milošev I, Kosec T, Strehblow H-H (2008) Electrochim Acta 53:3547–3558

    Article  Google Scholar 

  43. Acevedo-Peña P, Vázquez-Arenas J, Cabrera-Sierra R, Lartundo-Rojas L, González I (2013) J Electrochem Soc 160:C277–C284

    Article  Google Scholar 

  44. Yoriya S, Grimes CA (2011) J Mater Chem 21:102–108

    Article  CAS  Google Scholar 

  45. Yoriya S, Bao N, Grimes CA (2011) J Mater Chem 21:13909–13912

    Article  CAS  Google Scholar 

  46. Frateur I, Cattarin S, Musiani M, Tribollet B (2000) J Electroanal Chem 482:202–210

    Article  CAS  Google Scholar 

  47. Macak JM, Hildebrand H, Marten-Jahns U, Schmuki P (2008) J Electroanal Chem 621:254–266

    Article  CAS  Google Scholar 

  48. Acevedo-Peña P, Vázquez G, Laverde D, Pedraza-Rosas JE, Manríquez J, González I (2009) J Electrochem Soc 156:C377–C386

    Article  Google Scholar 

Download references

Acknowledgments

This work has been given the financial support from CONACyT (Project CB-2008/105655). Próspero Acevedo Peña is grateful to CONACyT for the PhD grant through the program doctorandos nacionales. The authors thank Dr. Patricia Castillo from Laboratorio Central de Microscopía Electrónica (UAM-I) for her assistance in SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Próspero Acevedo-Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acevedo-Peña, P., Lartundo-Rojas, L. & González, I. Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes. J Solid State Electrochem 17, 2939–2947 (2013). https://doi.org/10.1007/s10008-013-2212-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2212-2

Keywords

Navigation