Skip to main content
Log in

Interfacial and bulk processes during oxide growth on titanium in ethylene glycol-based electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Anodic oxidation has proven to be a promising route for the growth of self-ordering oxide nanotubes on Ti, the best results being obtained in ethylene glycol (EG)-based electrolytes with the addition of fluoride and small amounts of water. In the present paper, emphasis is put on the investigation of barrier film growth and dissolution on Ti in EG electrolytes with the addition of H2O (0.3–2.4 M) and NH4F (0.015–0.17 M) using electrochemical and surface analytical techniques. Steady-state current–potential curves and electrochemical impedance spectra as depending on potential (−0.1/5.0 V vs. AgCl/Ag), water and fluoride content have been registered. In addition, the chemical composition of the surface of the oxides obtained at 0.1 and 1.0 V has been estimated by X-ray photoelectron spectroscopy (XPS). XPS analysis revealed the presence of a non-stoichiometric oxide containing mainly Ti4+ and a certain amount of Ti3+, with a certain degree of hydroxylation. Estimates of the total thickness of the oxide from the XPS data using a dual layer model are also presented. A kinetic model of the process is advanced to quantitatively interpret the electrochemical and surface analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grimes CA, Varghese OK, Ranjan S (2008) Oxide semiconductors: nano-crystalline, tubular and porous systems. In Light, water, hydrogen. The solar generation of hydrogen by water photoelectrolysis. Springer, New York, chapter 5, pp 257–369

  2. Grimes CA, Mor GK (2009) TiO2 nanotube arrays. Synthesis, properties, and applications. Springer, New York

    Book  Google Scholar 

  3. Schmuki P (2009) Self-organized oxide nanotube layers on titanium and other transition metals. In: Schmuki P, Virtanen S (eds) Electrochemistry at the nanoscale. Springer, New York, chapter 12, pp 435–466

  4. Bojinov M (2011) Nanoporous anodic oxides. In: Sattler K (ed) Handbook of nanophysics, Volume 5, Functional nanomaterials, chapter 14. Taylor and Francis, Boca Raton, pp 14–1–14–21

    Google Scholar 

  5. Prakasam HE, Shankar K, Paulose M, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 111:7235–7241

    Article  CAS  Google Scholar 

  6. Thompson GE, Wood GC (1981) Porous anodic film formation on aluminium. Nature 290:230–232

    Article  CAS  Google Scholar 

  7. Parkhutik VP, Shershulsky J (1992) Theoretical modelling of porous oxide growth on aluminium. J Phys D Appl Phys 25:1258–1263

    Article  CAS  Google Scholar 

  8. Skeldon P, Thompson GE, Garcia-Vergara SJ, Iglesias-Rubianes L, Blanco-Pinzon CE (2006) A Tracer study of porous anodic alumina. Electrochem Solid-State Lett 9:B47–B51

    Article  CAS  Google Scholar 

  9. Houser JE, Hebert KR (2006) Modeling the potential distribution in porous anodic alumina films during steady-state growth. J Electrochem Soc 153:B566–B573

    Article  CAS  Google Scholar 

  10. Houser JE, Hebert KR (2008) Stress-driven transport in ordered porous anodic films. Phys Status Solidi A 205:2396–2399

    Article  CAS  Google Scholar 

  11. Houser JE, Hebert KR (2009) The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nat Mater 8:415–420

    Article  CAS  Google Scholar 

  12. Stanton LG, Golovin AA (2009) Effect of ion migration on the self-assembly of porous nanostructures in anodic oxides. Phys Rev B 79:035414

    Article  Google Scholar 

  13. Sheintuch M, Smagina Y (2007) Nanopore formation dynamics during aluminum anodization. Physica D 226:95–105

    Article  CAS  Google Scholar 

  14. Van Overmeere Q, Nysten B, Proost J (2009) In situ detection of porosity initiation during aluminum thin film anodizing. Appl Phys Lett 94:074103

    Article  Google Scholar 

  15. Macak JM, Hildebrand H, Marten-Jahns U, Schmuki P (2008) Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J Electroanal Chem 621:254–266

    Article  CAS  Google Scholar 

  16. Thébault F, Vuillemin B, Oltra R, Kunze J, Seyeux A, Schmuki P (2009) Modeling of growth and dissolution of nanotubular titania in fluoride-containing electrolytes. Electrochem Solid State Lett 12:C5–C9

    Article  Google Scholar 

  17. Bhargava YV, Nguyen QA, Devine TM (2009) Initiation of organized nanopore/nanotube arrays in anodized titanium oxide I. Criterion for initiation. J Electrochem Soc 156:E55–E61

    Article  Google Scholar 

  18. Nguyen QA, Bhargava YV, Devine TM (2009) Initiation of organized nanopore/nanotube arrays in anodized titanium oxide II. Nanopore size and spacing. J Electrochem Soc 156:E62–E68

    Article  Google Scholar 

  19. Hebert KR, Albu SP, Paramasivam I, Schmuki P (2011) Morphological instability leading to formation of porous anodic oxide films. Nat Mater 11:162–166

    Article  Google Scholar 

  20. Albu SP, Taccardi N, Paramasivam I, Hebert KR, Schmuki P (2012) Oxide growth efficiencies and self-organization of TiO2 nanotubes. J Electrochem Soc 159:H697–H703

    Article  CAS  Google Scholar 

  21. Bojinov M, Cattarin S, Musiani M, Tribollet B (2003) Evidence of coupling between film growth and metal dissolution in passivation processes. Electrochim Acta 48:4107–4117

    Article  CAS  Google Scholar 

  22. Karastoyanov V, Bojinov M (2008) Anodic oxidation of tungsten in sulphuric acid solution—influence of hydrofluoric acid addition. Mater Chem Phys 112:702–711

    Article  CAS  Google Scholar 

  23. Karastoyanov V, Bojinov M (2009) Mechanism of anodic oxidation of tungsten in neutral sulphate-fluoride solutions. J Solid State Electrochem 13:309–321

    Article  CAS  Google Scholar 

  24. Bojinov M, Karastoyanov V, Tzvetkov B (2010) Barrier layer growth and nanopore initiation during anodic oxidation of tungsten and niobium. ECS Trans 25:89–102

    Article  CAS  Google Scholar 

  25. Betova I, Bojinov M, Karastoyanov V, Kinnunen P, Saario T (2010) Estimation of kinetic and transport parameters by quantitative evaluation of EIS and XPS data. Electrochim Acta 55:6163–6173

    Article  CAS  Google Scholar 

  26. Frateur I, Cattarin S, Musiani M, Tribollet B (2000) Electrodissolution of Ti and p-Si in acidic fluoride media: formation ratio of oxide layers from electrochemical impedance spectroscopy. J Electroanal Chem 482:202–210

    Article  CAS  Google Scholar 

  27. Acevedo-Pena P, Gonzalez I (2012) EIS characterization of the barrier layer formed over Ti during its potentiostatic anodization in 0.1 M HClO4/x mM HF (1 mM ≤ x ≤ 500 mM). J Electrochem Soc 159:C101–C108

    Article  CAS  Google Scholar 

  28. Raja KS, Gandhi T, Misra M (2007) Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochem Commun 9:1069–1076

    Article  CAS  Google Scholar 

  29. Valota A, LeClere DJ, Skeldon P, Curioni M, Hashimoto T, Berger S, Kunze J, Schmuki P, Thompson GE (2009) Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochim Acta 54:4321–4327

    Article  CAS  Google Scholar 

  30. Berger S, Kunze J, Schmuki P, Valota AT, LeClere DJ, Skeldon P, Thompson GE (2010) Influence of water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes. J Electrochem Soc 157:C18–C23

    Article  CAS  Google Scholar 

  31. Wei W, Berger S, Hauser C, Meyer K, Yang M, Schmuki P (2010) Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. Electrochem Commun 12:1184–1186

    Article  CAS  Google Scholar 

  32. Bojinov M, Betova I, Raicheff R (1996) Kinetics of formation and properties of a barrier oxide film on molybdenum. J Electroanal Chem 411:37–42

    Article  Google Scholar 

  33. Bojinov M (1997) The ability of a surface charge approach to describe barrier film growth on tungsten in acidic solutions. Electrochim Acta 42:3489–3497

    Article  CAS  Google Scholar 

  34. Bojinov M (1997) Modelling the formation and growth of anodic passive films on metals in concentrated acid solutions. J Solid State Electrochem 1:161–171

    Article  CAS  Google Scholar 

  35. Biaggio SR, Rocha-Filho RC, Vilche JR, Varela FE, Gassa LM (1997) A study of thin anodic WO3 films by electrochemical impedance spectroscopy. Electrochim Acta 42:1751–1758

    Article  CAS  Google Scholar 

  36. Cattarin S, Musiani M, Tribollet B (2002) Nb electrodissolution in acid fluoride medium steady-state and impedance investigations. J Electrochem Soc 149:B457–B464

    Article  CAS  Google Scholar 

  37. Metikos-Hukovic M, Grubac Z (2003) The growth kinetics of thin anodic WO3 films investigated by electrochemical impedance spectroscopy. J Electroanal Chem 556:167–178

    Article  CAS  Google Scholar 

  38. Sapra S, Li H, Wang Z, Suni II (2005) Voltammetry and impedance studies of Ta in aqueous HF. J Electrochem Soc 152:B193–B197

    Article  CAS  Google Scholar 

  39. Kong DS (2010) Anion-incorporation model proposed for interpreting the interfacial physical origin of the faradaic pseudocapacitance observed on anodized valve metals; with anodized titanium in fluoride-containing perchloric acid as an example. Langmuir 26:4880–4891

    Article  CAS  Google Scholar 

  40. Curioni M, Koroleva EV, Skeldon P, Thompson GE (2010) Flow modulated ionic migration during porous oxide growth on aluminium. Electrochim Acta 55:7044–7049

    Article  CAS  Google Scholar 

  41. Giovanardi R, Fontanesi C, Dallabarba W (2011) Adsorption of organic compounds at the aluminium oxide/aqueous solution interface during the aluminium anodizing process. Electrochim Acta 56:3128–3138

    Article  CAS  Google Scholar 

  42. Castro JAP, Quintero-Torres R, de Tacconi NR, Rajeshwar K, Chanmanee W (2011) Anodic growth of titania nanotube array on titanium substrate: a study by electrochemical impedance spectroscopy. J Electrochem Soc 158:D84–D90

    Article  CAS  Google Scholar 

  43. Jonscher AK (1986) The physical origin of negative capacitance. J Chem Soc Faraday Trans 2(82):75–81

    Google Scholar 

  44. Göpel W, Anderson JA, Frankel D, Jaehnig M, Phillips K, Schäfer JA, Rocker G (1984) Surface defects of TiO2(110): a combined XPS, XAES and ELS study. Surf Sci 139:333–346

    Article  Google Scholar 

  45. Antony RP, Mathews T, Dash S, Tyagi AK, Raj B (2012) X-ray photoelectron spectroscopic studies of anodically synthesized self aligned TiO2 nanotube arrays and the effect of electrochemical parameters on tube morphology. Mater Chem Phys 132:957–966

    Article  CAS  Google Scholar 

  46. Yang B, Ng CK, Fung MK, Ling CC, Djurisic AB, Fung S (2011) Annealing study of titanium oxide nanotube arrays. Mater Chem Phys 130:1227–1231

    Article  CAS  Google Scholar 

  47. Huang HH (2002) Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomater 23:59–63

    Article  CAS  Google Scholar 

  48. Habazaki H, Fushimi K, Shimizu K, Skeldon P, Thompson GE (2007) Fast migration of fluoride ions in growing anodic titanium oxide. Electrochem Commun 9:1222–1227

    Article  CAS  Google Scholar 

  49. Berger S, Albu SP, Schmidt-Stein F, Hildebrand H, Schmuki P, Hammond JS, Paul DF, Reichlmaier S (2011) The origin for tubular growth of TiO2 nanotubes: A fluoride rich layer between tube-walls. Surf Sci 605:L57–L60

    Article  CAS  Google Scholar 

  50. Macdonald DD (1992) The point defect model for the passive state. J Electrochem Soc 139:3434–3449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the by the National Science Fund, Bulgarian Ministry of Education and Science, under contract DDVU-02-103 “Nanoporous anodic oxides as new generation of optically active and catalytic materials (NOXOAC, 2010–2013)” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bojinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stancheva, M., Bojinov, M. Interfacial and bulk processes during oxide growth on titanium in ethylene glycol-based electrolytes. J Solid State Electrochem 17, 1271–1283 (2013). https://doi.org/10.1007/s10008-012-1990-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1990-2

Keywords

Navigation