Skip to main content
Log in

Epitaxial CeO2 thin films for a mechanism study of resistive random access memory (ReRAM)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A thin epitaxial CeO2 film was grown on a Cu(111) single crystal in order to investigate the mechanism of resistive memory/switching devices with an ultimately thin high-k dielectric film. A small amount of Pt was deposited on the CeO2 film and the Pt/CeO2/Cu structure was characterized by conductive atomic force microscopy and X-ray photoelectron spectroscopy. It was found that the grown epitaxial CeO2 film was fully oxidized, i.e., the valence of Ce atoms in the film was completely Ce4+. However, after the deposition of a small amount of Pt, it was revealed that Ce atoms were partially reduced to Ce3+ in full thickness of the film. The Pt/CeO2/Cu structure did not show switching behavior in resistance. The observed reduction of CeO2 film is considered to be responsible to the non-switching behavior. The thermodynamics of the reduction of the CeO2 film and the kinetics of oxygen diffusion in the reduced CeO2 film are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu SQ, Wu NJ, Ingatiev A (2000) Appl Phys Lett 76:2749–2751

    Article  CAS  Google Scholar 

  2. Beck A, Bednorz JG, Gerber C, Rossel C, Widmer D (2000) Appl Phys Lett 77:139–141

    Article  CAS  Google Scholar 

  3. Waser R, Aono M (2007) Nat Mater 6:833–840

    Article  CAS  Google Scholar 

  4. Sawa A (2008) Mater Today 11(6):28–36

    Article  CAS  Google Scholar 

  5. Waser R, Dittmann R, Staikov G, Szot K (2009) Adv Mater 21:2632–2663

    Article  CAS  Google Scholar 

  6. Akinaga H, Shima H (2010) Proc IEEE 98:2237–2251

    Article  CAS  Google Scholar 

  7. Chen YS, Lee HY, Chen PS, Gu PY, Chen CW, Lin WP, Liu WH, Hsu YY, Sheu SS, Chiang PC, Chen WS, Chen FT, Lien CH, and Tsai M–J (2009) Tech Dig Int Electron Devices Meeting:105–108

  8. Waser R (2012) J Nanosci Nanotechnol 12:7628–7640

    Article  CAS  Google Scholar 

  9. Lin C-Y, Lee D-Y, Wang S-Y, Lin C-C, Tseng T-Y (2008) Surf Coat Technol 203:480–483

    Article  CAS  Google Scholar 

  10. Dou C, Kakushima K, Ahmet P, Tsutsui K, Nishiyama A, Sugii N, Natori K, Hattori T, Iwai H (2012) Microelectron Reliab 52:688–691

    Article  CAS  Google Scholar 

  11. Zarraga-Colina J, Nix RM (2006) Surf Sci 600:3058–3071

    Article  CAS  Google Scholar 

  12. Matolin V, Johanek V, Skoda M, Tsud N, Prince KC, Skala T, Matolinova I (2010) Langmuir 26:13333–13341

    Article  CAS  Google Scholar 

  13. Matolín V, Libra J, Matolínová I, Nehasil V, Sedláček L, Šutara F (2007) Appl Surf Sci 254:153–155

    Article  Google Scholar 

  14. Šutara F, Cabala M, Sedláček L, Skála T, Škoda M, Matolín V, Prince KC, Cháb V (2008) Thin Solid Films 516:6120–6124

    Article  Google Scholar 

  15. Staudt T, Lykhach Y, Hammer L, Schneider MA, Matolín V, Libuda J (2009) Surf Sci 603:3382–3388

    Article  CAS  Google Scholar 

  16. Baron M, Bondarchuk O, Stacchiola D, Shaikhutdinov S, Freund H-J (2009) J Phys Chem C 113:6042–6049

    Article  CAS  Google Scholar 

  17. Dvorak F, Stetsovych O, Steger M, Cherradi E, Matolinova I, Tsud N, Skoda M, Skala T, Myslivecek J, Matolin V (2011) J Phys Chem C 115:7496–7503

    Article  CAS  Google Scholar 

  18. Bennewitz R, Barwich V, Bammerlin M, Loppacher C, Guggisberg M, Baratoff A, Meyer E, Guntherodt HJ (1999) Surf Sci 438:289–296

    Article  CAS  Google Scholar 

  19. Denhoff MW, Mason BF, Tran HT, Grant PD (1996) Mat Res Soc Symp Proc 401:339–344

    Article  CAS  Google Scholar 

  20. Zhou Y, Perket JM, Zhou J (2010) J Phys Chem C 114:11853–11860

    Article  CAS  Google Scholar 

  21. Zhou Y, Zhou J (2010) J Phys Chem Lett 1:609–615

    Article  CAS  Google Scholar 

  22. Mullins DR, Overbury SH, Huntley DR (1998) Surf Sci 409:307–319

    Article  CAS  Google Scholar 

  23. Pfau A, Schierbaum KD (1994) Surf Sci 321:71–80

    Article  CAS  Google Scholar 

  24. Matolín V, Cabala M, Cháb V, Matolínová I, Prince KC, Škoda M, Šutara F, Skála T, Veltruská K (2008) Surf Interface Anal 40:225–230

    Article  Google Scholar 

  25. Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF (2003) Surf Sci 526:1–18

    Article  CAS  Google Scholar 

  26. Skála T, Šutara F, Škoda M, Prince KC, Matolín V (2009) J Phys Condens Matter 21:055005-1-9

    Google Scholar 

  27. Mullins DR, Zhang KZ (2002) Surf Sci 513:163–173

    Article  CAS  Google Scholar 

  28. Škoda M, Cabala M, Matolínová I, Prince KC, Skála T, Šutara F, Veltruská K, Matolín V (2009) J Chem Phys 130:034703-1-7

    Google Scholar 

  29. Lide DR (ed) (1994) CRC handbook of chemistry and physics, 74th edn. CRC, London

    Google Scholar 

  30. van der Geest ME, Dangerfield NJ, Harrington DA (1997) J Electroanal Chem 420:89–100

    Article  Google Scholar 

  31. Brennan D, Hayward DO, Trapnell BMW (1960) Proc Roy Soc London A256:81–105

    Google Scholar 

  32. Brewer L (1953) Chem Rev 52:1–75

    Article  CAS  Google Scholar 

  33. Samsonov GV (ed) (1973) The oxide handbook. IFI/Plenum, New York

    Google Scholar 

  34. Lide DR (ed) (1988) CRC handbook of chemistry and physics, 68th edn. CRC, London

    Google Scholar 

  35. Kamiya M, Shimada E, Ikuma Y, Komatsu M, Haneda H (2000) J Electrochem Soc 147:1222–1227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by the “Charles University—NIMS Joint Graduate School Program.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiko Yoshitake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshitake, M., Vaclavu, M., Chundak, M. et al. Epitaxial CeO2 thin films for a mechanism study of resistive random access memory (ReRAM). J Solid State Electrochem 17, 3137–3144 (2013). https://doi.org/10.1007/s10008-013-2200-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2200-6

Keywords

Navigation