Skip to main content
Log in

Honeycomb hybrid crystal TiO2 film electrode for efficient benzoic acid synthesis

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly ordered TiO2 nanotube film on a titanium foil was prepared by an anodization process. Then, the anatase–rutile hybrid crystal TiO2 materials fabricated at 700 °C were used as an anode for electrochemical synthesis of benzoic acid from toluene. At this anode, the highest yield of benzoic acid at ambient temperature is 27.5%, but it rises to 32.8% at 90 °C with a toluene conversion rate of 49.1%. The yield is increased mainly due to the hybrid crystal of the novel anode, and the formation of carbonized TiO2 nanotube surface at the Ti substrate together facilitates the charge transfer and induces a significant enhancement in the anode reactivity. Moreover, the effects of calcination temperature on the morphology, structures and crystallization of the TiO2 nanotubes were discussed in detail. A synergistic effect of electric field, visible light irradiation, and temperature for benzoic acid synthesis at the anatase–rutile hybrid crystal TiO2 was discussed. To our knowledge, this is the first study about the use of the carbonized anatase–rutile hybrid TiO2 nanotube films electrode in benzoic acid synthesis under the coupling fields. This study provides new insights into high-performance metal oxide electrode materials for organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Vincenzo B (2005) Nanoscience and nanotechnology: a personal view of a chemist. Small 1:278–283

    Article  Google Scholar 

  2. George MW (2005) Nanoscience, nanotechnology, and chemistry. Small 1:172–179

    Article  Google Scholar 

  3. Wang Z, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed 51:11700–11721

    Article  Google Scholar 

  4. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  5. Somaieh M, Adam H, Kamelia VKB (2014) Synthesis of TiO2 nanoparticles in a spinning disc reactor. Chem Eng J 258:171–184

    Article  Google Scholar 

  6. Zhu YJ, Wang HY, Wang BH et al (2016) Solar thermoelectric field plus photocatalysis for efficient organic synthesis exemplified by toluene to benzoic acid. Appl Catal B Environ 193:151–159

    Article  Google Scholar 

  7. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

    Article  Google Scholar 

  8. Xiong H, Slater MD, Balasubramanian M et al (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2:2560–2565

    Article  Google Scholar 

  9. Regonini D, Bowen CR, Jaroenworaluck A et al (2013) A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci Eng, R 74:377–406

    Article  Google Scholar 

  10. Zhang Q, Cao G (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6:91–109

    Article  Google Scholar 

  11. Meng CH, Liu ZY, Zhang TR et al (2015) Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chem 17:2764–2768

    Article  Google Scholar 

  12. Damien D, Ilias B, Khalil A (2010) Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chem Mater 22:1173–1179

    Article  Google Scholar 

  13. Scanlon DO, Dunnill CW, Buckeridge J et al (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801

    Article  Google Scholar 

  14. Crossland EJW, Noel N, Sivaram V et al (2013) Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495:215–219

    Article  Google Scholar 

  15. Kim HS, Lee JW, Yantara N et al (2013) High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 13:2412–2417

    Article  Google Scholar 

  16. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. doi:10.1007/s10853-010-5113-0

    Article  Google Scholar 

  17. Wang GM, Wang HY, Ling YL et al (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  Google Scholar 

  18. Kho YK, Iwase A, Teoh WY et al (2010) Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J Phys Chem C 114:2821–2829

    Article  Google Scholar 

  19. Yu J, Dai G, Cheng B (2010) Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films. J Phys Chem C 114:19378–19385

    Article  Google Scholar 

  20. Zhu YJ, Wang BH, Liu XL et al (2014) STEP organic synthesis: an efficient solar, electrochemical process for the synthesis of benzoic acid. Green Chem 16:4758–4766

    Article  Google Scholar 

  21. Zhu YJ, Wang BH, Wang HY et al (2015) Towards efficient solar STEP synthesis of benzoic acid: role of graphite electrode. Sol Energy 113:303–312

    Article  Google Scholar 

  22. Bojinova A, Kralchevska R, Poulios I et al (2007) Anatase/rutile TiO2 composites: influence of the mixing ratio on the photocatalytic degradation of malachite green and orange II in slurry. Mater Chem Phys 106(2):187–192

    Article  Google Scholar 

  23. Bakardjieva S, Šubrt J, Štengl V et al (2005) Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl Catal B Environ 58(3):193–202

    Article  Google Scholar 

  24. Mirabolghasemi H, Liu N, Lee K et al (2013) Formation of ‘single walled’ TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chem Commun 49:2067–2069

    Article  Google Scholar 

  25. Lv J, Shen Y, Peng L et al (2010) Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen. Chem Commun 46:5909–5911

    Article  Google Scholar 

  26. Kesavan L, Tiruvalam R, Rahim Ab et al (2011) Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au–Pd alloy nanoparticles. Science 331:195–199

    Article  Google Scholar 

  27. Titirici MM, White RJ, Brun N et al (2015) Sustainable carbon materials. Chem Soc Rev 44:250–290

    Article  Google Scholar 

  28. Hurum DC, Agrios AG, Gray KA et al (2003) Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549

    Article  Google Scholar 

  29. Yang HG, Sun CH, Qiao SZ et al (2008) Crystal growth: anatase shows its reactive side. Nature 453:638–641

    Article  Google Scholar 

  30. Hahn R, Schmidt-Stein F, Salonen J et al (2009) Semimetallic TiO2 Nanotubes. Angew Chem 121:7372–7375

    Article  Google Scholar 

  31. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293

    Article  Google Scholar 

  32. Kiran V, Sampath S (2012) Enhanced Raman spectroscopy of molecules adsorbed on carbon-doped TiO2 obtained from titanium carbide: a visible-light-assisted renewable substrate. ACS Appl Mater Inter 4:3818–3828

    Article  Google Scholar 

  33. Li G, Li J, Li G et al (2015) N and Ti3+ co-doped 3D anatase TiO2 superstructures composed of ultrathin nanosheets with enhanced visible light photocatalytic activity. J Mater Chem A 3(44):22073–22080

    Article  Google Scholar 

  34. Ren W, Ai Z, Jia F et al (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B Environ 69:138–144

    Article  Google Scholar 

  35. Pang YL, Abdullah AZ (2013) Effect of carbon and nitrogen co-doping on characteristics and sonocatalytic activity of TiO2 nanotubes catalyst for degradation of Rhodamine B in water. Chem Eng J 214:129–138

    Article  Google Scholar 

  36. Li S, Zhang G, Guo D et al (2009) Anodization fabrication of highly ordered TiO2 nanotubes. J Phys Chem C 113:12759–12765

    Article  Google Scholar 

  37. Fang D, Luo ZP, Huang KL et al (2011) Effect of heat treatment on morphology, crystalline structure and photocatalysis properties of TiO2 nanotubes on Ti substrate and freestanding membrane. Appl Surf Sci 257(15):6451–6461

    Article  Google Scholar 

  38. Nolan NT, Synnott DW, Seery MK et al (2012) Effect of N-doping on the photocatalytic activity of sol–gel TiO2. J Hazard Mater 211–212:88–94

    Article  Google Scholar 

  39. Gouma PI, Mills MJ (2001) Anatase to rutile transformation in powders of titania. J Am Ceram Soc 84:619–622

    Article  Google Scholar 

  40. Pawar SG, Patil SL, Chougule MA et al (2011) Synthesis and characterization of nanocrystalline TiO2 thin films. J Mater Sci: Mater Electron 22(3):260–264

    Google Scholar 

  41. Takahara Y, Kondo JN, Takata T et al (2001) Mesoporous Tantalum Oxide. 1. Characterization and photocatalytic activity for the overall water decomposition. Chem Mater 13:1194–1199

    Article  Google Scholar 

  42. Kyaw AKK, Wang DH, Gupta V et al (2013) Intensity dependence of current–voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. ACS Nano 7:4569–4577

    Article  Google Scholar 

  43. Ma Y, Wang XL, Jia YS et al (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114:9987–10043

    Article  Google Scholar 

  44. Hou Y, Li XY, Zhao QD et al (2012) Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation. Environ Sci Technol 46(7):4042–4050

    Article  Google Scholar 

  45. Jiang Z, Wang H, Huang H et al (2004) Photocatalysis enhancement by electric field: TiO2 thin film for degradation of dye X-3B. Chemosphere 56:503–508

    Article  Google Scholar 

  46. Tripathy J, Lee K, Schmuki P (2014) Tuning the selectivity of photocatalytic synthetic reactions using modified TiO2 nanotubes. Angew Chem 126(46):12813–12816

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Young Top Talents Plan of China (2013042), National Science Foundation of China (Grant Nos. 21676052, 21606042), Science Foundation for Distinguished Young Scholars (JC201403) and Natural Science Foundation of Heilongjiang Province (E2015034), the State Key Laboratory of Materials-Oriented Chemical Engineering (KL15-11) and the China Postdoctoral Science Foundation Funded Project (2016M600406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiyuan Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Li, H., Gu, D. et al. Honeycomb hybrid crystal TiO2 film electrode for efficient benzoic acid synthesis. J Mater Sci 52, 6623–6634 (2017). https://doi.org/10.1007/s10853-017-0898-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0898-8

Keywords

Navigation