Skip to main content
Log in

Polyvinylpyrrolidone and graphene-modified hematite nanoparticles for efficient electrocatalytic oxidation of p-nitrophenol

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyvinylpyrrolidone (PVP) and graphene (G)-modified iron oxides (Fe2O3-PVP-G) are prepared by a simple hydrothermal reaction. Their morphology and structure were examined and proved by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible diffuse reflectance spectroscopy. P-nitrophenol (p-NP) is a usual organic pollutant, which is highly toxic and difficult to decompose. Electrochemical reduction of p-NP is a widely used treatment, but the reduction products are still toxic. In this work, the electrochemical catalytic oxidation of p-NP was achieved on Fe2O3-PVP-G modified electrodes. Compared to pure Fe2O3, Fe2O3-PVP-G shows better catalytic performance, with a current density 10.4 times larger than that from Fe2O3. Electrochemical results verify that the improvement comes from the promotion of its activity and the favorable enrichment of p-NP with the help of the doped PVP and G. pH experiments indicate that p-NP is oxidized to aliphatic acid, which is non-toxic and environmentally friendly. Due to the protection of organic molecules, Fe2O3-PVP-G exhibits long-term stabilities on electrochemical oxidation on p-NP with the retention of 88.5% for 15 days. Our results also provide another perspective for studying electrocatalytic performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu ZS, Yang SB, Sun Y, Parvez K, Feng XL, Mullen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient eletrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085

    Article  CAS  PubMed  Google Scholar 

  2. Zhang HM, Zhao Y, Zhang YJ, Zhang MH, Cheng MS, Yu JL, Liu HC, Ji MW, Zhu CZ, Xu J (2019) Fe3O4 encapsulated in porous carbon nanobowls as efficient oxygen reduction reaction catalyst for Zn-air batteries. Chem Eng J 375:4131–4136

    Article  Google Scholar 

  3. Browne MP, Sofer Z, Pumera M (2019) Layered and two dimensional metal oxides for electrochemical energy conversion. Energ Environ Sci 12(1):41–58

    Article  CAS  Google Scholar 

  4. Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786

    Article  CAS  PubMed  Google Scholar 

  5. Shao MH, Chang QW, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116(6):3594–3657

    Article  CAS  PubMed  Google Scholar 

  6. Liu YY, Jiang HL, Zhu YH, Yang XL, Li CZ (2016) Transition metals (Fe Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J Mater Chem A 4(5):1694–1701

    Article  CAS  Google Scholar 

  7. Hu CG, Dai LM (2019) Doping of carbon materials for metal-free electrocatalysis. Adv Mater 31(7):1804672

    Article  Google Scholar 

  8. Yin MY, Zhang YY, Bian ZF, Bu YF, Chen XY, Zhu TL, Wang ZG, Wang J, Kawi S, Zhong Q (2019) Efficient and stable nanoporous functional composited electrocatalyst derived from Zn/Co-bimetallic zeolitic imidazolate frameworks for oxygen reduction reaction in alkaline media. Electrochim Acta 299:610–617

    Article  CAS  Google Scholar 

  9. Zhang ZW, Jin HH, Zhu JW, Li WQ, Zhang CT, Zhao JH, Luo F, Sun ZG, Mu SC (2020) 3D flower-like ZnFe-ZIF derived hierarchical Fe, N-Codoped carbon architecture for enhanced oxygen reduction in both alkaline and acidic media, and zinc-air battery performance. Carbon 161:502–509

    Article  CAS  Google Scholar 

  10. Liu LZ, Ci SQ, Bi LL, Jia JC, Wen ZH (2017) Three-dimensional nanoarchitectures of Co nanoparticles inlayed on N-doped macroporous carbon as bifunctional electrocatalysts for glucose fuel cells. J Mater Chem A 5(28):14763–14774

    Article  CAS  Google Scholar 

  11. Aijaz A, Masa J, Rosler C, Xia W, Weide A, Botz AJR, Fischer RA, Schuhmann W, Muhler M (2016) Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew Chem Int Ed 55(12):4087–4091

    Article  CAS  Google Scholar 

  12. Chen D, Zhang XY, Chen HW, Shi HF, Jiang XB, Mu Y, Pant D, Han WQ, Sun XY, Li JS, Shen JY, Wang LJ (2021) Simultaneous removal of pyridine and denitrification in an integrated bioelectro-photocatalytic system utilizing N-doped graphene/α-Fe2O3 modified photoanode. Electrochim Acta 366:137425

  13. Maiti K, Kim NH, Lee JH (2021) Strongly stabilized integrated bimetallic oxide of Fe2O3-MoO3 nano-crystal entrapped N-doped graphene as a superior oxygen reduction reaction electrocatalyst. Chem Eng J 410:128358

  14. Bayode AA, dos Santos DM, Omorogie MO, Olukanni OD, Moodley R, Bodede O, Agunbiade FO, Taubert A, de Camargo ASS, Eckert H, Vieira EM, Unuabonah EI (2021) Carbon-mediated visible-light clay-Fe2O3-graphene oxide catalytic nanocomposites for the removal of steroid estrogens from water. J Water Process Eng 40:101865

  15. Yuan Y, Jiang W, Wang YJ, Shen P, Li FS, Li PY, Zhao F, Gao HX (2014) Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Appl Surf Sci 303:354–359

    Article  CAS  Google Scholar 

  16. Noypha A, Areerob Y, Chanthai S, Nuengmatcha P (2020) Fe2O3-graphene anchored Ag nanocomposite catalyst for enhanced sonocatalytic degradation of methylene blue. J Korean Ceram Soc 58(3):297–306

    Article  Google Scholar 

  17. Frindy S, Sillanpää M (2020) Synthesis and application of novel α-Fe2O3/graphene for visible-light enhanced photocatalytic degradation of RhB. Mater Design 188:108461

  18. Haridas V, Sukhananazerin A, Sneha JM, Pullithadathil B, Narayanan B (2020) α-Fe2O3 loaded less-defective graphene sheets as chemiresistive gas sensor for selective sensing of NH3. Appl Surf Sci 517:146158

  19. Neravathu D, Paloly AR, Sajan P, Satheesh M, Bushiri MJ (2020) Hybrid nanomaterial of ZnFe2O4/α-Fe2O3 implanted graphene for electrochemical glucose sensing application. Diam Relat Mater 106:107852

  20. Nuengmatcha P, Porrawatkul P, Chanthai S, Sricharoen P, Limchoowong N (2019) Enhanced photocatalytic degradation of methylene blue using Fe2O3/graphene/CuO nanocomposites under visible light. J Environ Chem Eng 7(6):103438

  21. Nasiri M, Sangpour P, Yousefzadeh S, Bagheri M (2019) Elevated temperature annealed α-Fe2O3/reduced graphene oxide nanocomposite photoanode for photoelectrochemical water oxidation. J Environ Chem Eng 7(2):102999

  22. Pragada SC, Thalla AK (2021) Polymer-based immobilized Fe2O3–TiO2/PVP catalyst preparation method and the degradation of triclosan in treated greywater effluent by solar photocatalysis. J Environ Manage 296:113305

  23. Gerami SE, Pourmadadi M, Fatoorehchi H, Yazdian F, Rashedi H, Nigjeh MN (2020) Preparation of pH-sensitive chitosan/polyvinylpyrrolidone/α-Fe2O3 nanocomposite for drug delivery application: emphasis on ameliorating restrictions. Int J Biol Macromol 173:409–420

    Article  Google Scholar 

  24. Ramos-Rivera L, Distaso M, Peukert W, Boccaccini AR (2017) Electrophoretic deposition of anisotropic a-Fe2O3/PVP/chitosan nanocomposites for biomedical applications. Mater Lett 200:83–86

    Article  CAS  Google Scholar 

  25. Zhang M, Chen XQ, Zhou H, Murugananthan M, Zhang YR (2015) Degradation of p-nitrophenol by heat and metal ions co-activated persulfate. Chem Eng J 264:39–47

    Article  CAS  Google Scholar 

  26. Qin L, Zeng ZT, Zeng GM, Lai C, DuanAB, Xiao R, Huang DL, Fu YK, Yi H, Li BS, Liu XG, Liu SY, Zhang MM, Jiang DN (2019) Cooperative catalytic performance of bimetallic Ni-Au nanocatalyst for highly efficient hydrogenation of nitroaromatics and corresponding mechanism insight. Appl Catal B-Environ 259:118035

  27. Zhou XX, Liu C, Huang DL, Zeng GM, Chen L, Qin L, Xu P, Cheng M, Huang C, Zhang C, Zhnag CY (2018) Preparation of water-compatible molecularly imprinted thiol-functionalized activated titanium dioxide: Selective adsorption and efficient photodegradation of 2, 4-dinitrophenol in aqueous solution. J Hazard Mater 346:113–123

    Article  CAS  PubMed  Google Scholar 

  28. Chen XQ, Murugananthan M, Zhang YR (2016) Degradation of p-nitrophenol by thermally activated persulfate in soil system. Chem Eng J 283:1357–1365

    Article  CAS  Google Scholar 

  29. Yi S, Zhuang WQ, Wu B, Tay STL, Tay JH (2006) Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor. Environ Sci Technol 40(7):2396–2401

    Article  CAS  PubMed  Google Scholar 

  30. Rodrigues SCD, Soares OSGP, Pinho MT, Pereira MFR, Madeira LM (2017) p-Nitrophenol degradation by heterogeneous Fenton’s oxidation over activated carbon-based catalysts. Appl Catal B-Environ 219:109–122

    Article  CAS  Google Scholar 

  31. Tong ML, Sun DR, Zhang RR, Liu H, Chen RF (2021) Preparation of Si-α-Fe2O3/CdS composites with enhanced visible-light photocatalytic activity for p-nitrophenol degradation. J Alloys Compd 862:158271

  32. Wang NN, Zeng S, Yuan H, Huang J (2020) Morphology-dependent interfacial interactions of Fe2O3 with Ag nanoparticles for determining the catalytic reduction of p-nitrophenol. J Environ Sci 92:1–10

    Article  Google Scholar 

  33. Luo HW, Zhao YY, He DQ, Ji Q, Cheng Y, Zhang DY, Pan XL (2019) Hydroxylamine-facilitated degradation of rhodamine B (RhB) and p-nitrophenol (p-NP) as catalyzed by Fe@Fe2O3 core-shell nanowires. J Mol Liq 282:13–22

    Article  CAS  Google Scholar 

  34. Zhang KF, Liu YX, Deng JG, Xie SH, Lin HX, Zhao XT, Yang J, Han Z, Dai HX (2017) Fe2O3/3DOM BiVO4: high-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Appl Catal B-Environ 202:569–579

    Article  CAS  Google Scholar 

  35. Mohamed MJS, Shenoy US, Bhat DK (2018) Novel NRGO-CoWO4-Fe2O3 nanocomposite as an efficient catalyst for dye degradation and reduction of 4-nitrophenol. Mater Chem Phys 208:112–122

    Article  CAS  Google Scholar 

  36. Fang LJ, Jiang RJ, Zhang Y, Munthali RM, Huang XY, Wu XG, Liu ZJ (2021) Enhanced photocatalytic activity for 4-nitrophenol degradation using visible-light-driven In2S3/α-Fe2O3 composite. J Solid State Chem 303:122461

  37. Yulizar Y, Sudirman, Apriandanu DOB, Jabbar JLA (2021) Facile one-pot preparation of V2O5-Fe2O3 nanocomposites using Foeniculum vulgare extracts and their catalytic property. Inorg Chem Commun 123:108320

  38. Ramu AG, Salla S, Gopi S, Silambarasan P, Yang DJ, Song MJ, Ali HM, Salem MZM, Choi DJ (2021) Surface-tuned hierarchical ɤ-Fe2O3-N-rGO nanohydrogel for efficient catalytic removal and electrochemical sensing of toxic nitro compounds. Chemosphere 268:128853

  39. Su YN, Zheng XL, Cheng HY, Rao MH, Chen KD, Xia JR, Lin LX, Zhu H (2021) Mn-Fe3O4 nanoparticles anchored on the urushiol functionalized 3D-graphene for the electrochemical detection of 4-nitrophenol. J Hazard Mater 409:124926

  40. Dib M, Moutcine A, Ouchetto H, Ouchetto K, Chtaini A, Hafid A, Khouili M (2021) Novel synthesis of α-Fe2O3@Mg/Al-CO3-LDH nanocomposite for rapid electrochemical detection of p-nitrophenol. Inorg Chem Commun 131:108788

  41. Wang QZ, Li R, Zhao YJ, Zhe TT, BuT, LiuYN, Sun XY, Hu HF, Zhang M, Zheng XH, Wang L (2020) Surface morphology-controllable magnetic covalent organic frameworks: a novel electrocatalyst for simultaneously high-performance detection of p-nitrophenol and o-nitrophenol. Talanta 219:121255

  42. Wang MH, Liu YK, Yang LY, He TK, LH, Zhang ZH, Jia QJ, Song YP, Fang SM, (2019) Bimetallic metal–organic framework derived FeOx/TiO2 embedded in mesoporous carbon nanocomposite for the sensitive electrochemical detection of 4-nitrophenol. Sensor Actuat B-Chem 281:1063–1072

    Article  CAS  Google Scholar 

  43. Rahman MM, Sheikh TA, Asiri AM, Alamry KA, Hasnat MA (2020) Fabrication of an ultra-sensitive para-nitrophenol sensor based on facile Zn-doped Er2O3 nanocomposites via an electrochemical approach. Anal Methods 12:3470–3483

    Article  CAS  PubMed  Google Scholar 

  44. Rahman MM, Marwani HM, Algethami FK, Asiri AM, Hameed SA, Alhogbi B (2017) Ultra-sensitive p-nitrophenol sensing performances based on various Ag2O conjugated carbon material composites. Environmental Nanotechnology Monitoring & Management 8:73–82

    Article  Google Scholar 

  45. Uddin MT, Alam MM, Asiri AM, Rahman MM, Toupance T, Islam MA (2020) Electrochemical detection of 2-nitrophenol using a heterostructure ZnO/RuO2 nanoparticle modified glassy carbon electrode. RSC Adv 10:122–132

    Article  CAS  Google Scholar 

  46. Rahman MM, Wahid A, Alam MM, Asiri AM (2018) Efficient 4-nitrophenol sensor development based on facile Ag@Nd2O3 nanoparticles. Mate Today Commun 16:307–313

    Article  CAS  Google Scholar 

  47. Rahman MM, Alam MM, Asiri AM (2018) 2-Nitrophenol sensor-based wet-chemically prepared binary doped Co3O4/Al2O3 nanosheets by an electrochemical approach. RSC Adv 8:960–970

    Article  CAS  Google Scholar 

  48. Khan A, Khan AAP, Rahman MM, Asiri AM, Inamuddin AKA, Hameed SA (2018) Preparation and characterization of PANI@G/CWO nanocomposite for enhanced 2-nitrophenol sensing. Appl Surf Sci 433:696–704

    Article  CAS  Google Scholar 

  49. Alam MK, Rahman MM, Abbas M, Torati SR, Asiri AM, Kim D, Kim C (2017) Ultra-sensitive 2-nitrophenol detection based on reduced graphene oxide/ZnO nanocomposites. J Electroanal Chem 788:66–73

    Article  CAS  Google Scholar 

  50. Hussain MM, Rahman MM, Asiri AM (2016) Efficient 2-nitrophenol chemical sensor development based on Ce2O3 nanoparticles decorated CNT nanocomposites for environmental safety. PLoS One 11:e0166265

  51. Subhan MA, Saha PC, Ahmed J, Asiri AM, Al-Mamun M, Rahman MM (2020) Development of an ultra-sensitive para-nitrophenol sensor using tri-metallic oxide MoO2·Fe3O4·CuO nanocomposites. Mate Adv 1:2831–2839

    Article  CAS  Google Scholar 

  52. Khan SB, Rahman MM, Akhtar K, Asiri AM, Rub MA (2014) Nitrophenol chemi-sensor and active solar photocatalyst based on spinel hetaerolite nanoparticles. PLoS One 9:e85290

  53. Alam MM, Asiri AM, Rahman MM (2021) Electrochemical detection of 2-nitrophenol using a glassy carbon electrode modified with BaO nanorods. Chem Asian J 16:1475–1485

    Article  CAS  PubMed  Google Scholar 

  54. Harraz FA, Ismail AA, Al-Sayari SA, Al-Hajry A (2015) Novel α-Fe2O3/polypyrrole nanocomposite with enhanced photocatalytic performance. J Photoch Photobio A 299:18–24

    Article  CAS  Google Scholar 

  55. Wang HZ, Zhang XT, Liu B, Zhao HL, Li YC, Huang YB, Du ZL (2005) Synthesis and characterization of single crystal α-Fe2O3 nanobelts. Chem Lett 34(2):184–185

    Article  CAS  Google Scholar 

  56. Keyes BM, Gedvilas LM, Li X, Coutts TJ (2005) Infrared spectroscopy of polycrystalline ZnO and ZnO: N thin films. J Cryst Growth 281(2–4):297–302

    Article  CAS  Google Scholar 

  57. Baykal A, Bitrak N, Ünal B, Kavas H, Durmus Z, Özden Ş, Toprak MS (2010) Polyol synthesis of (polyvinylpyrrolidone) PVP–Mn3O4 nanocomposite. J Alloys Compd 502(1):199–205

    Article  CAS  Google Scholar 

  58. Sui XM, Liu YC, Shao CL, Liu YX, Xu CS (2006) Structural and photoluminescent properties of ZnO hexagonal nanoprisms synthesized by microemulsion with polyvinyl pyrrolidone served as surfactant and passivant. Chem Phys Lett 424(4–6):340–344

    Article  CAS  Google Scholar 

  59. Stanjek H, Schwertmann U (1992) The influence of aluminum on iron oxides. Part XVI: Hydroxyl and aluminum substitution in synthetic hematites. Clay Clay Miner 40(3):347–354

  60. Zhong DK, Sun JW, Inumaru H, Gamelin DR (2009) Solar water oxidation by composite catalyst/alpha-Fe2O3 photoanodes. J Am Chem Soc 131(17):6086–6087

    Article  CAS  PubMed  Google Scholar 

  61. Zhang XD, Yang Y, Song L, Wang YX, He C, Wang Z, Cui LF (2018) High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation. Mol Catal 447:80–89

    Article  CAS  Google Scholar 

  62. Harraz FA, Faisal M, Jalalah M, Almadiy AA, Al-Sayari SA, Al-Assiri MS (2020) Conducting polythiophene/α-Fe2O3 nanocomposite for efficient methanol electrochemical sensor. Appl Surf Sci 508:145226

  63. Xu ZH, Ming Z, Wu JY, Liang JR, Zhou LX, Lu B (2013) Visible light-degradation of azo dye methyl orange using TiO2/β-FeOOH as a heterogeneous photo-Fenton-like catalyst. Water Sci Technol 68(10):2178–2185

    Article  CAS  PubMed  Google Scholar 

  64. Cai CC, Zhang MX (2013) XPS analysis of carbon and oxygen in coking coal with different density intervals. Appl Mech Mater 347–350:1239–1243

    Article  Google Scholar 

  65. Silipigni L, Cutroneo M, Salvato G, Torrisi L (2018) In-situ soft X-ray effects on graphene oxide films. Radiat Eff Defect S 173(9–10):740–750

    Article  CAS  Google Scholar 

  66. Figueiredo JL, Pereira MFR (2010) The role of surface chemistry in catalysis with carbons. Catal Today 150(1–2):2–7

    Article  CAS  Google Scholar 

  67. Ansón-Casaos A, Puértolas JA, Pascual FJ, Hernández-Ferrer J, Castell P, Benito AM, Maser WK, Martínez MT (2014) The effect of gamma-irradiation on few-layered graphene materials. Appl Surf Sci 301:264–272

    Article  Google Scholar 

  68. Gong M, Dai HJ (2015) A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res 8(1):23–39

    Article  CAS  Google Scholar 

  69. Zhou L, Zhou MH, Hu ZX, Bi ZH, Serrano KG (2014) Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation. Electrochim Acta 140:376–383

    Article  CAS  Google Scholar 

  70. Wang FF, Ou RP, Yu HB, Lu Y, Qu J, Zhu SY, Zhang LL, Huo MX (2021) Photoelectrocatalytic PNP removal using C3N4 nanosheets/α-Fe2O3 nanoarrays photoanode: Performance, mechanism and degradation pathways. Appl Surf Sci 565:150597

  71. Wang N, Lv GC, He L, Sun XM (2021) New insight into photodegradation mechanisms, kinetics and health effects of p-nitrophenol by ozonation in polluted water. J Hazard Mater 403:123805

Download references

Funding

This work is supported by Jiangsu Provincial Key R&D Project (BE2016187), Jiangsu Province Students’ Platform for Innovation and Entrepreneurship Training Program (202010300073), and (202110300299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 135 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Li, Z., Wei, Y. et al. Polyvinylpyrrolidone and graphene-modified hematite nanoparticles for efficient electrocatalytic oxidation of p-nitrophenol. J Solid State Electrochem 26, 1051–1065 (2022). https://doi.org/10.1007/s10008-022-05146-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05146-6

Keywords

Navigation