Skip to main content

Advertisement

Log in

Enhanced HER and ORR behavior on photodeposited Pt nanoparticles onto oxide–carbon composite

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The photodeposition process under ultraviolet domain for platinum nanoparticles was explored. The concomitant presence of different mechanisms during the photodeposition of Pt nanoparticles onto TiO2 in the presence of water and alcohol is evidenced. According to the process, one can devise various complex mechanisms. The presence of nanoparticulated oxide anatase phase enhances the photodeposition process of metal nanoparticles via the so-called heterogeneous photocatalysis. A description and the effect of mixing of various chemicals in the reactor reveal interesting information, which allows controlling the size of nanoparticles by the photodeposition process. This study also paves the way to decrease the amount of precious metals used in material composition used as catalysts towards hydrogen evolution reaction and oxygen reduction reaction for fuel cell technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ma J, Habrioux A, Guignard N, Alonso-Vante N (2012) Functionalizing effect of increasingly graphitic carbon supports on carbon-supported and TiO2–carbon composite-supported Pt nanoparticles. J Phys Chem C 116(41):21788–21794

    Article  CAS  Google Scholar 

  2. Timperman L, Alonso-Vante N (2011) Oxide substrate effect toward electrocatalytic enhancement of platinum and ruthenium–selenium catalysts. Electrocatalysis 2(3):181–191

    Article  CAS  Google Scholar 

  3. Timperman L, Gago AS, Alonso-Vante N (2011) Oxygen reduction reaction increased tolerance and fuel cell performance of Pt and RuxSey onto oxide–carbon composites. J Power Sources 196(9):4290–4297

    Article  CAS  Google Scholar 

  4. Kinoshita K (1988) Carbon: electrochemical and physicochemical properties. Wiley, New York

    Google Scholar 

  5. Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119

    Article  CAS  Google Scholar 

  6. Ruiz Camacho B, Morais C, Valenzuela MA, Alonso-Vante N (2013) Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites. Catal Today 202:36–43

    Article  CAS  Google Scholar 

  7. Vogel W, Timperman L, Alonso-Vante N (2010) Probing metal substrate interaction of Pt nanoparticles: structural XRD analysis and oxygen reduction reaction. Appl Catal A 377(1–2):167–173

    CAS  Google Scholar 

  8. Lewera A, Timperman L, Roguska A, Alonso-Vante N (2011) Metal–support interactions between nanosized Pt and metal oxides (WO3 and TiO2) studied using X-ray photoelectron spectroscopy. J Phys Chem C 115(41):20153–20159

    Article  CAS  Google Scholar 

  9. Timperman L, Lewera A, Vogel W, Alonso-Vante N (2010) Nanostructured platinum becomes alloyed at oxide-composite substrate. Electrochem Commun 12(12):1772–1775

    Article  CAS  Google Scholar 

  10. Ma J, Habrioux A, Pisarek M, Lewera A, Alonso-Vante N (2013) Induced electronic modification of Pt nanoparticles deposited onto graphitic domains of carbon materials by UV irradiation. Electrochem Commun 29:12–16

    Article  CAS  Google Scholar 

  11. Einaga H, Harada M (2005) Photochemical preparation of poly(N-vinyl-2-pyrrolidone)-stabilized platinum colloids and their deposition on titanium dioxide. Langmuir 21(6):2578–2584

    Article  CAS  Google Scholar 

  12. Harada M, Einaga H (2006) Formation mechanism of Pt particles by photoreduction of Pt ions in polymer solutions. Langmuir 22(5):2371–2377

    Article  CAS  Google Scholar 

  13. Ruiz C, González Huerta RG, Valenzuela MA, Alonso-Vante N (2011) Preparation and characterization of Pt/C and Pt/TiO2 electrocatalysts by liquid phase photodeposition. Top Catal 54(8–9):512–518

    Article  Google Scholar 

  14. Ruiz-Camacho B, Valenzuela MA, Perez-Galindo JA, Pola F, Miki-Yoshida M, Alonso-Vante N, Gonzalez-Huerta RG (2010) Oxygen reduction reaction on Pt/C catalysts prepared by impregnation and liquid phase photo-deposition. J New Mater Electrochem Syst 13(3):183–189

    CAS  Google Scholar 

  15. Alonso-Vante N (2006) Carbonyl tailored electrocatalysts. Fuel Cells 6(3–4):182–189

    Article  CAS  Google Scholar 

  16. Fabish TJ, Hair ML (1977) The dependence of the work function of carbon black on surface acidity. J Colloid Interface Sci 62(1):16–23

    Article  CAS  Google Scholar 

  17. Kathiravan A, Renganathan R (2009) Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment. J Colloid Interface Sci 335(2):196–202

    Article  CAS  Google Scholar 

  18. Sykes ECH, Williams FJ, Tikhov MS, Lambert RM (2002) Nucleation, growth, sintering, mobility, and adsorption properties of small gold particles on polycrystalline titania. J Phys Chem B 106(21):5390–5394

    Article  CAS  Google Scholar 

  19. Grivin VP, Khmelinski IV, Plyusnin VF (1990) Intermediates in the photoreduction of PtCl6 2− in methanol. J Photochem Photobiol A 51(3):379–389

    Article  CAS  Google Scholar 

  20. Grivin VP, Khmelinski IV, Plyusnin VF (1991) Primary photochemical processes of the PtCl6 2− complex in alcohols. J Photochem Photobiol A 59(2):153–161

    Article  CAS  Google Scholar 

  21. Grivin VP, Khmelinski IV, Plyusnin VF, Blinov II, Balashev KP (1990) Photochemistry of the PtCl6 2− complex in methanol solution. J Photochem Photobiol A 51(2):167–178

    Article  CAS  Google Scholar 

  22. Mohamed RM (2009) Characterization and catalytic properties of nano-sized Pt metal catalyst on TiO2-SiO2 synthesized by photo-assisted deposition and impregnation methods. J Mater Process Tech 209(1):577–583

    Article  CAS  Google Scholar 

  23. Shim J, Lee C-R, Lee H-K, Lee J-S, Cairns EJ (2001) Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell. J Power Sources 102(1–2):172–177

    Article  CAS  Google Scholar 

  24. Marković NM, Grgur BN, Ross PN (1997) Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J Phys Chem B 101(27):5405–5413

    Article  Google Scholar 

  25. Mello RMQ, Ticianelli EA (1997) Kinetic study of the hydrogen oxidation reaction on platinum and Nafion covered platinum electrodes. Electrochim Acta 42(6):1031–1039

    Article  CAS  Google Scholar 

  26. Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ (1998) Characterization of high-surface area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145(7):2354–2358

    Article  CAS  Google Scholar 

  27. Ma J, Habrioux A, Gago AS, Alonso-Vante N (2012) Towards understanding the essential role played by the platinum–support interaction on electrocatalytic activity. ECS Transactions, Seattle

    Google Scholar 

  28. Marković NM, Adžić RR, Cahan BD, Yeager EB (1994) Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J Electroanal Chem 377(1–2):249–259

    Google Scholar 

  29. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247

    Article  CAS  Google Scholar 

  30. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992

    Article  CAS  Google Scholar 

  31. Koh S, Leisch J, Toney MF, Strasser P (2007) Structure-activity-stability relationships of Pt–Co alloy electrocatalysts in gas-diffusion electrode layers. J Phys Chem C 111(9):3744–3752

    Article  CAS  Google Scholar 

  32. Yang H, Vogel W, Lamy C, Alonso-Vante N (2004) Structure and electrocatalytic activity of carbon-supported Pt–Ni alloy nanoparticles toward the oxygen reduction reaction. J Phys Chem B 108(30):11024–11034

    Article  CAS  Google Scholar 

  33. Yamazaki H, Kamimizu S, Hara K, Sakamoto K (2003) Structure analysis of W(001)2 × 1–O surface at room and liquid nitrogen temperatures. Surf Sci 538(3):L505–L510

    Article  CAS  Google Scholar 

  34. Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK (1997) Surface electronic structure and reactivity of transition and noble metals. J Mol Catal-Chem 115(3):421–429

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J. Ma thanks “Ministère de l’Enseignement Supérieur et Recherche” for a fellowship and Poitou-Charentes region for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Alonso-Vante.

Additional information

This work is dedicated to Prof. W. Vielstich in the occasion of his 90th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Habrioux, A. & Alonso-Vante, N. Enhanced HER and ORR behavior on photodeposited Pt nanoparticles onto oxide–carbon composite. J Solid State Electrochem 17, 1913–1921 (2013). https://doi.org/10.1007/s10008-013-2046-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2046-y

Keywords

Navigation