Skip to main content
Log in

Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Si/C composite nanofibers were prepared by electrospinning and carbonization using polyacrylonitrile as the spinning medium and carbon precursor. The effect of electrolyte additive succinic anhydride (SA) on the electrochemical performance of Si/C composite nanofiber anodes was investigated. Results show that after 50 cycles, the discharge capacity of Si/C composite nanofiber anode with the SA-added electrolyte is 34 % higher than that with additive-free electrolyte. At 150th cycle, the capacity retention of Si/C composite nanofiber anode with SA-added electrolyte is 82 % under 70 % state-of-charge. It is demonstrated that adding additive SA in the electrolyte is an effective and economic way to improve the cyclability of high-capacity Si/C composite nanofibers for next-generation high-energy lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kaskhedikar NA, Maier J (2009) Adv Mater 21:2664–2680

    Article  CAS  Google Scholar 

  2. Obrovac MN, Christensen L (2004) Electrochemical and Solid-State Letters 7:A93–A96

    Article  CAS  Google Scholar 

  3. Obrovac MN, Krause LJ (2007) J Electrochem Soc 154:A103–A108

    Article  CAS  Google Scholar 

  4. Thakur M, Isaacson M, Sinsabaugh SL, Wong MS, Biswal SL (2012) J Power Sources 205:426–432

    Article  CAS  Google Scholar 

  5. Wilson AM, Dahn JR (1995) J Electrochem Soc 142:326–332

    Article  CAS  Google Scholar 

  6. Fleischauer MD, Topple JM, Dahn JR (2005) Electrochemical and Solid-State Letters 8:A137–A140

    Article  CAS  Google Scholar 

  7. Si Q, Hanai K, Imanishi N, Kubo M, Hirano A, Takeda Y, Yamamoto O (2009) J Power Sources 189:761–765

    Article  CAS  Google Scholar 

  8. Wei-Jun Z (2011) J Power Sources 196:877–885

    Article  Google Scholar 

  9. Zhou X, Yin Y-X, Wan L-J, Guo Y-G (2012) Chem Commun 48:2198–2200

    Article  CAS  Google Scholar 

  10. Ji L, Jung K-H, Medford AJ, Zhang X (2009) J Mater Chem 19:4992–4997

    Google Scholar 

  11. Ji L, Zhang X (2009) Carbon 47:3219–3226

    Article  CAS  Google Scholar 

  12. Ji L, Zhang X (2009) Electrochem Commun 11:1146–1149

    Article  CAS  Google Scholar 

  13. Ji L, Zhang X (2010) Energy Environ Sci 3:124–129

    Google Scholar 

  14. Gu M, Li Y, Li X, Hu S, Zhang X, Xu W, Thevuthasan S, Baer DR, Zhang J-G, Liu J, Wang C (2012) ACS Nano 6:8439–8447

    Article  CAS  Google Scholar 

  15. Li Y, Lin Z, Xu G, Yao Y, Zhang S, Toprakci O, Alcoutlabi M, Zhang X (2012) ECS Electrochemistry Letters 1:A31–A33

    Article  CAS  Google Scholar 

  16. Li Y, Guo B, Ji L, Lin Z, Xu G, Liang Y, Zhang S, Toprakci O, Hu Y, Alcoutlabi M, Zhang X (2013) Carbon 51:185–194

    Article  CAS  Google Scholar 

  17. Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E (1997) J Power Sources 68:91–98

    Article  CAS  Google Scholar 

  18. Aurbach D, Ein-Eli Y (1995) J Electrochem Soc 142:1746–1752

    Article  CAS  Google Scholar 

  19. Choi N-S, Yew KH, Lee KY, Sung M, Kim H, Kim S-S (2006) J Power Sources 161:1254–1259

    Article  CAS  Google Scholar 

  20. Aurbach D, Gnanaraj JS, Geissler W, Schmidt M (2004) J Electrochem Soc 151:A23–A30

    Article  CAS  Google Scholar 

  21. Inose T, Tada S, Morimoto H, Tobishima S-I (2006) J Power Sources 161:550–559

    Article  CAS  Google Scholar 

  22. Han GB, Ryou MH, Cho KY, Lee YM, Park JK (2010) J Power Sources 195:3709–3714

    Article  CAS  Google Scholar 

  23. Ota H, Sakata Y, Otake Y, Shima K, Ue M, Yamaki J-i (2004) J Electrochem Soc 151:A1778–A1788

    Google Scholar 

  24. McArthur MA, Trussler S, Dahn JR (2012) J Electrochem Soc 159:A198–A207

    Article  CAS  Google Scholar 

  25. Xu K, von Cresce A (2011) J Mater Chem 21:9849–9864

    Article  CAS  Google Scholar 

  26. Hu Y-S, Demir-Cakan R, Titirici M-M, Müller J-O, Schlögl R, Antonietti M, Maier J (2008) Angew Chem Int Ed 47:1645–1649

    Article  CAS  Google Scholar 

  27. Zhang SS, Ding MS, Xu K, Allen J, Jow TR (2001) Electrochemical and Solid State Letters 4:A206–A208

    Article  CAS  Google Scholar 

  28. Zhang SS (2006) J Power Sources 162:1379–1394

    Article  CAS  Google Scholar 

  29. Chan CK, Ruffo R, Hong SS, Huggins RA, Cui Y (2009) J Power Sources 189:34–39

    Article  CAS  Google Scholar 

  30. Yen Y-C, Chao S-C, Wu H-C, Wu N-L (2009) J Electrochem Soc 156:A95–A102

    Article  CAS  Google Scholar 

  31. Chan CK, Ruffo R, Hong SS, Cui Y (2009) J Power Sources 189:1132–1140

    Article  CAS  Google Scholar 

  32. Lee YM, Lee JY, Shim H-T, Lee JK, Park J-K (2007) J Electrochem Soc 154:A515–A519

    Article  CAS  Google Scholar 

  33. Etacheri V, Haik O, Goffer Y, Roberts GA, Stefan IC, Fasching R, Aurbach D (2011) Langmuir 28:965–976

    Article  Google Scholar 

  34. Andersson AM, Abraham DP, Haasch R, MacLaren S, Liu J, Amine K (2002) J Electrochem Soc 149:A1358–A1369

    Article  CAS  Google Scholar 

  35. Zhang X-W, Patil PK, Wang C, Appleby AJ, Little FE, Cocke DL (2004) J Power Sources 125:206–213

    Article  CAS  Google Scholar 

  36. Wang L, Yu Y, Chen P-C, Chen C-H (2008) Scr Mater 58:405–408

    Article  CAS  Google Scholar 

  37. Zhang SS, Xu K, Jow TR (2006) Electrochim Acta 51:1636–1640

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the U.S. Department of Energy under Grant No: DE-EE0001177, Advanced Transportation Energy Center, and ERC Program of the National Science Foundation under Award Number EEC-08212121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangwu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Xu, G., Yao, Y. et al. Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive. J Solid State Electrochem 17, 1393–1399 (2013). https://doi.org/10.1007/s10008-013-2005-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2005-7

Keywords

Navigation