Skip to main content
Log in

The electrochemistry of nanostructured Ni–W alloys

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work reports on the features that Ni–W nanostructured alloys, electrodeposited on carbon steel by different current pulse programs, may present depending on their surface morphology and surface composition. The Ni–W nanostructured coating, with a cauliflower structure, lack of fragility, and high WO3/W surface composition ratio, is a stable electrode to catalyze hydrogen evolution reaction, exceeding bulk and electrodeposited Ni catalytic activity. Also, the nanostructured alloys must have a low WO3/W surface composition ratio for Ni and its oxides to provide protection and improve corrosion resistance in sulfate media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yamasaki T (2000) Mater Phys Mech 1:127–132

    CAS  Google Scholar 

  2. Younes O, Zhu L, Rosenberg Y, Shacham-Diamond Y, Gileadi E (2001) Langmuir 17:8270–8275

    Article  CAS  Google Scholar 

  3. Cesiulis H, Baltutiene A, Donten M, Donten ML, Stojek Z (2002) J Solid State Electrochem 6:237–244

    Article  CAS  Google Scholar 

  4. Yang F-Z, Guo Y-F, Huang L, Xu S-K, Zhou S-M (2004) Chin J Chem 22:228–231

    Article  CAS  Google Scholar 

  5. Sriraman KR, Ganesh Sundara Raman S, Seshadri SK (2006) Mater Sci Eng A 418:303–311

    Article  Google Scholar 

  6. Sriraman KR, Ganesh Sundara Raman S, Seshadri SK (2007) Mater Sci Eng A 460–461:39–45

    Google Scholar 

  7. Detor AJ, Schuh CA (2007) Acta Mater 55:371–379

    Article  CAS  Google Scholar 

  8. Alimadadi H, Ahmadi M, Aliofkhazraei M, Younesi SR (2009) Mater Des 30:1356–1361

    Article  CAS  Google Scholar 

  9. Cardinal MF, Castro PA, Baxi J, Liang H, Williams FJ (2009) Surf Coat Technol 204:85–90

    Article  CAS  Google Scholar 

  10. de Lima-Neto P, Correia AN, Santana RAC, Colares RP, Barros EB, Casciano PNS, Vaz GL (2010) Electrochim Acta 55:2078–2086

  11. Quiroga Argañaraz MP, Ribotta SB, Folquer ME, Gassa LM, Benítez G, Vela ME, Salvarezza RC (2011) Electrochim Acta 56:5898–5903

    Article  Google Scholar 

  12. Zemanová M, Krivosudská M, Chovancová M (2011) J Appl Electrochem 41:1077–1085

    Article  Google Scholar 

  13. Chianpairot A, Lothongkum G, Schuh CA, Boonyongmaneerat Y (2011) Corros Sci 53:1066–1071

    Article  CAS  Google Scholar 

  14. Farzaneh MA, Zamanzad-Ghavidel MR, Raeissi K, Golozar MA, Saatchi A, Kabi S (2011) Appl Surf Sci 257:5919–5926

    Article  CAS  Google Scholar 

  15. Obradović MD, Stevanović J, Stevanović RM, Despić AR (2000) J Electroanal Chem 491:188–196

    Article  Google Scholar 

  16. Younes O, Gileadi E (2002) J Electrochem Soc 149(2):C100–C111

    Article  CAS  Google Scholar 

  17. Younes-Metzler O, Zhu L, Gileadi E (2003) Electrochim Acta 48:2551–2562

    Article  CAS  Google Scholar 

  18. Obradović MD, Bošnjakov GŽ, Stevanović RM, Maksimović MD, Despić AR (2006) Surf Coat Technol 200:4201–4207

    Article  Google Scholar 

  19. Zhu L, Younes O, Ashkenasy N, Shacham-Diamond Y, Gileadi E (2002) Appl Surf Sci 200:1–14

    Article  CAS  Google Scholar 

  20. Yamasaki T, Schloβmacher P, Ehrlich K, Ogino Y (1998) Nanostruct Mater 10:375–388

    Article  CAS  Google Scholar 

  21. Krolikowski A, Plonska E, Ostrowski A, Donten M, Stojek Z (2009) J Solid State Electrochem 13:263–275

    Article  CAS  Google Scholar 

  22. Donten M, Cesiulis H, Stojek Z (2000) Electrochim Acta 45:3389–3396

    Article  CAS  Google Scholar 

  23. Younes O, Gileadi E (2000) Electrochem Solid State Lett 3:543–545

    Article  CAS  Google Scholar 

  24. Obradović M, Stevanović J, Despić A, Stevanović R, Stoch J (2001) J Serb Chem Soc 66(11–12):899–912

    Google Scholar 

  25. Sassi W, Dhouibi L, Berçot P, Rezrazi M, Triki E (2012) Surf Coat Technol 206:4235–4241

    Article  CAS  Google Scholar 

  26. Quiroga Argañaraz MP, Ribotta SB, Folquer ME, Zelaya E, Llorente C, Ramallo-López JM, Benítez G, Rubert A, Gassa LM, Vela ME, Salvarezza RC (2012) Electrochim Acta 72:87–93

    Article  Google Scholar 

  27. Lucente AM, Scully JR (2007) Corros Sci 49:2351–2361

    Article  CAS  Google Scholar 

  28. Acosta CC, Salvarezza RC, Videla HA, Arvia AJ (1985) Corros Sci 25:291–303

    Article  CAS  Google Scholar 

  29. Jones DA (1992) Principles and prevention of corrosion. Macmillan, New York

    Google Scholar 

  30. Juškėnas R, Valsiũnas I, Pakštas V, Giraitis R (2009) Electrochim Acta 54:2616–2620

    Article  Google Scholar 

  31. Harnisch F, Sievers G, Schröder U (2009) Appl Catal B Environ 89:455–458

    Article  CAS  Google Scholar 

  32. Lin S-C, Chiu Y-F, Wu P-W, Hsieh Y-F, Wu C-Y (2010) J Mater Res 25:2001–2007

    Article  CAS  Google Scholar 

  33. Savadogo O, Ndzebet E (1993) J Appl Electrochem 23:915–921

    Article  CAS  Google Scholar 

  34. Savadogo O (1993) Mater Chem Phys 35:145–150

    Article  CAS  Google Scholar 

  35. Abbaro SA, Tseung ACC, Hibbert DB (1980) J Electrochem Soc 127:1106–1107

    Article  CAS  Google Scholar 

  36. Metikoš-Huković M, Grubač Z, Radić N, Tonejc A (2006) J Mol Catal Chem 249:172–180

    Article  Google Scholar 

  37. Zheng H, Mathe M (2011) Int J Hydrogen Energy 36:1960–1964

    Article  CAS  Google Scholar 

  38. Gassa LM, Vilche JR, Arvia AJ (1983) J Appl Electrochem 13:135–145

    Article  CAS  Google Scholar 

  39. Barral G, Njanjo-Eyoke F, Maximovitch S (1995) Electrochim Acta 40:709–718

    Article  CAS  Google Scholar 

  40. Ortiz PI, López Teijelo M, Giordano MC (1988) J Electroanal Chem 243:379–391

    Article  CAS  Google Scholar 

  41. Anik M, Osseo-Asare K (2002) J Electrochem Soc 149:B224–B233

    Article  CAS  Google Scholar 

  42. Anik M (2010) Corros Sci 52:3109–3117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 03079), the Agencia Nacional para la Promoción de la Ciencia y la Tecnología Argentina (ANPCyT, PICT 2010-2554, PICT CNPQ-0019), and Consejo de Investigaciones de la Universidad Nacional de Tucumán, Argentina. MEV is member of the research career of CICPBA, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Folquer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quiroga Argañaraz, M.P., Ribotta, S.B., Folquer, M.E. et al. The electrochemistry of nanostructured Ni–W alloys. J Solid State Electrochem 17, 307–313 (2013). https://doi.org/10.1007/s10008-012-1965-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1965-3

Keywords

Navigation