Skip to main content
Log in

Effects of compositional and structural features on corrosion behavior of nickel–tungsten alloys

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ni–W alloys were electrodeposited onto copper foil from citrate solution. Coatings containing from 11 to 21 at.% W and having 7–52 μm in thickness were obtained. The structure of these alloys was analyzed by X-ray diffraction and by using electron and light microscopy techniques. Alloys with 11 and 15% W are composed of two phases: solid solution of W in fcc Ni and solid solution of Ni in bcc W. An increase in W content in the Ni–W alloys to ca. 18–19% of W resulted in the grain refinement and the transition to amorphous structure. The corrosion behavior of obtained Ni–W and unalloyed Ni coatings was studied in 0.5 M NaCl solution by means of electrochemical impedance spectroscopy, potentiodynamic polarization and light microscopy. Comparing to pure Ni, the obtained Ni–W coatings exhibited a clearly decreased corrosion resistance (in terms of corrosion current density and polarization or charge transfer resistance at the open circuit potential). Despite of the quite wide range of composition of the alloys under test, the related grain refinement, and the transition to the amorphous structure, no clear relation between the corrosion rate and W content was detected. This behavior can be a result of the interplay of the activating effect of grain refinement or preferential dissolution of W from one side and diffusion barrier action or inhibition provided by the surface film of W oxidation products from the other side. The differences observed in the corrosion resistance of Ni–W coatings are more related to their morphological imperfections arising from various deposition conditions than to the W content. Some samples showed a rather non-uniform nature of corrosion (pronounced attack along cracks). An inversion in the dissolution behavior of Ni–W and unalloyed Ni was observed with increasing anodic potential. Contrary to pure Ni, Ni–W coatings were resistant to pitting corrosion in NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sriraman KR, Ganesh Sundara Raman S, Seshadri SK (2007) Mater Sci Eng A 460–461:39 doi:10.1016/j.msea.2007.02.055

    Google Scholar 

  2. Eliaz N, Sridhar TM, Gileadi E (2005) Electrochim Acta 50:2893 doi:10.1016/j.electacta.2004.11.038

    Article  CAS  Google Scholar 

  3. Pisarek M, Janik-Czachor M, Donten M (2008) Surf Coat Tech 202:1980 doi:10.1016/j.surfcoat.2007.08.047

    Article  CAS  Google Scholar 

  4. Obradovic M, Stevanovic J, Despic A, Stevanovic R, Stoch J (2001) J Serb Chem Soc 66(11–12):899

    CAS  Google Scholar 

  5. Ren R, Wu YC, Shu X, Shi CW, Li Y, Zheng YC (2005) Trans Nonferous Met Soc China 15:198, in Chinese

    CAS  Google Scholar 

  6. Donten M, Stojek Z, Królikowski A, Płonska E (2007) 211th Meeting of the Electrochemical Society, Chicago, Abs 549

  7. Lee SL, Lee YF, Chang MH, Lin JC (1999) Corros Prev Contr 46(3):71

    CAS  Google Scholar 

  8. Stepanova LI, Purovskaya OG (1998) Met Finish 96:50 doi:10.1016/S0026-0576(98)80871-4

    Article  CAS  Google Scholar 

  9. Ke ST, Lee JL, Hou KH, Ger MD (2006) J Technol 21:75, in Chinese

    Google Scholar 

  10. Atanassov N, Gencheva K, Bratova M (1997) Plat Surf Finish 84:67

    CAS  Google Scholar 

  11. Zhu L, Zhong Q, Liu J (2000) Plat Surf Finish 87:74

    CAS  Google Scholar 

  12. Królikowski A (2007) Ochr p Kor (in Polish) 50(4):140

    Google Scholar 

  13. Yao S, Zhao S, Guo H, Kowaka M (1996) Corrosion 52(3):183

    CAS  Google Scholar 

  14. Yamasaki T, Schlossmacher P, Erlich K, Ogino Y (1998) Nanostruct Mater 10(3):375 doi:10.1016/S0965-9773(98)00078-6

    Article  CAS  Google Scholar 

  15. Galikova Z, Chovancova M, Danielik V (2006) Chem Pap 60(5):353 doi:10.2478/s11696-006-0064-2

    Article  CAS  Google Scholar 

  16. Wu Y, Chang D, Kim D, Kwon S (2003) Surf Coat Tech 162:269 doi:10.1016/S0257-8972(02)00699-0

    Article  CAS  Google Scholar 

  17. Wu Y, Chang D, Kim D, Kwon S (2003) Surf Coat Tech 173:259 doi:10.1016/S0257-8972(03)00449-3

    Article  CAS  Google Scholar 

  18. Yang FZ, Guo YF, Huang L, Xu SK, Zhou SM (2004) Chin J Chem 2:228

    Google Scholar 

  19. Nawarro-Flores E, Chong Z, Omanovic S (2005) J Mol Catal Chem 226:179 doi:10.1016/j.molcata.2004.10.029

    Article  CAS  Google Scholar 

  20. Somekawa T, Nieh TG, Higashi K (2004) Scr Mater 50:1561

    Google Scholar 

  21. Nasu T, Sakurai M, Kamiyama T, Usuki T, Uemura O, Yamasaki T (2002) J Non-Cryst Solids 312–314:319 doi:10.1016/S0022-3093(02)01702-7

    Article  Google Scholar 

  22. Schuh CA, Nieh TG, Iwasaki H (2003) Acta Mater 51:431 doi:10.1016/S1359-6454(02)00427-5

    Article  CAS  Google Scholar 

  23. Giga A, Kimoto Y, Takigawa Y, Higashi K (2006) Scr Mater 55:143 doi:10.1016/j.scriptamat.2006.03.047

    Article  CAS  Google Scholar 

  24. Sulitanu N, Brinza F (2003) J Optoelectronics. Adv Mater 5(2):421

    CAS  Google Scholar 

  25. Yamasaki T (2000) Mater Phys Mech 1:127

    CAS  Google Scholar 

  26. Itoh K, Wang F, Watanabe T (2001) Nippon Kinzoku Gakkaishi 65(11):1023 in Japanese

    CAS  Google Scholar 

  27. Donten M, Cesiulis H, Stojek Z (2000) Electrochim Acta 45:3389 doi:10.1016/S0013-4686(00)00437-0

    Article  CAS  Google Scholar 

  28. Donten M, Stojek Z (1996) J Appl Electrochem 26:665 doi:10.1007/BF00253466

    Article  CAS  Google Scholar 

  29. Cesiulis H, Baltutiene A, Donten M, Donten ML, Stojek Z (2002) J Solid State Electrochem 6:237 doi:10.1007/s100080100225

    Article  CAS  Google Scholar 

  30. Wang H, Yao S, Matsumura S (2002) Surf Coat Tech 157:166 doi:10.1016/S0257-8972(02)00151-2

    Article  CAS  Google Scholar 

  31. Moussa SO, Ibrahim MAM, Abd El Rehim SS (2006) J Appl Electrochem 36:333 doi:10.1007/s10800-005-9069-8

    Article  CAS  Google Scholar 

  32. Zhu L, Younes O, Ashkenasy N, Schacham-Diamand Y, Gileadi E (2002) Appl Surf Sci 200(1–4):1 doi:10.1016/S0169-4332(02)00894-2

    Article  CAS  Google Scholar 

  33. Zhang L, Macdonald DD (1998) Electrochim Acta 43(18):2661 doi:10.1016/S0013-4686(97)00268-5

    Article  CAS  Google Scholar 

  34. Sakai Y, Shitanda I, Itagaki M, Watanabe K, Yasuda K, Saitou M (2007) 7th Intern Symp on Electrochemical Impedance Spectroscopy, Argeles-sur-Mer, Abstract 96

  35. Magalhaes AAO, Margarit ICP, Mattos OR (1999) Electrochim Acta 44:4281 doi:10.1016/S0013-4686(99)00143-7

    Article  CAS  Google Scholar 

  36. Magalhaes AAO, Margarit ICP, Mattos OR (2004) J Electroanal Chem 572(2):433 doi:10.1016/j.jelechem.2004.07.016

    Article  CAS  Google Scholar 

  37. Hsu CS, Mansfeld F (2001) Corrosion 57(9):747

    Article  CAS  Google Scholar 

  38. Jacobsen T, West K (1995) Electrochim Acta 40:255 doi:10.1016/0013-4686(94)E0192-3

    Article  CAS  Google Scholar 

  39. Campestrini P, van Westing EPM, Hovestad A, de Wit JHW (2002) Electrochim Acta 47:1097 doi:10.1016/S0013-4686(01)00818-0

    Article  CAS  Google Scholar 

  40. Campestrini P, Terryn H, Vereecken J, de Wit JHW (2004) J Electrochem Soc 151(6):B370 doi:10.1149/1.1736683

    Article  CAS  Google Scholar 

  41. Lloyd AC, Noel JJ, McIntyre S, Shoesmith DW (2004) Electrochim Acta 49:3015 doi:10.1016/j.electacta.2004.01.061

    Article  CAS  Google Scholar 

  42. Zhang YZ, Yao M (1999) Trans IMF 77(2):78

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Królikowski.

Additional information

Contribution to the Fall Meeting of the European Materials Research Society, Symposium D: 9th International Symposium on Electrochemical/Chemical Reactivity of Metastable Materials, Warsaw, 17th–21st September, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Królikowski, A., Płońska, E., Ostrowski, A. et al. Effects of compositional and structural features on corrosion behavior of nickel–tungsten alloys. J Solid State Electrochem 13, 263–275 (2009). https://doi.org/10.1007/s10008-008-0712-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0712-2

Keywords

Navigation