Skip to main content
Log in

Microwave-assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

High surface area carbon-supported Pt, PtRh, and PtSn catalysts were synthesized by microwave-assisted polyol procedure and tested for ethanol oxidation in perchloric acid. The catalysts were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning tunnelling microscopy (STM), TEM, and EDX techniques. STM analysis of unsupported catalysts shows that small particles (∼2 nm) with a narrow size distribution are obtained. TEM and XRD examinations of supported catalysts revealed an increase in particle size upon deposition on carbon support (diameter ∼ 3 nm). The diffraction peaks of the bimetallic catalysts in X-ray diffraction patterns are slightly shifted to lower (PtSn/C) or higher (PtRh/C) 2θ values with respect to the corresponding peaks at Pt/C catalyst as a consequence of alloy formation. Oxidation of ethanol is significantly improved at PtSn/C with the onset potential shifted for ∼ 150 mV to more negative values and the increase of activity for approximately three times in comparison to Pt/C catalyst. This is the lowest onset potential found for ethanol oxidation at PtSn catalysts with a similar composition. Chronoamperometric measurements confirmed that PtSn/C is notably less poisoned than Pt/C catalyst. PtRh/C catalyst exhibited mild enhancement of overall electrochemical reaction in comparison to Pt/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Antolini E (2007) J Power Sources 170:1–12

    Article  CAS  Google Scholar 

  2. Wang Q, Sun GQ, Jiang LH, Xin Q, Sun SG, Jiang YX, Chen SP, Jusys Z, Behm RJ (2007) Phys Chem Chem Phys 9:2686–2696

    Article  CAS  Google Scholar 

  3. Zhou W, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) App Catal B 46:273–285

    Article  CAS  Google Scholar 

  4. Tsiakaras PE (2007) J Power Sorces 171:107–112

    Article  CAS  Google Scholar 

  5. Kowal A, Gojković SLj, Lee K-S, Olszewski P, Sung Y-E (2009) Electrochem Commun 11:724–727

    Article  CAS  Google Scholar 

  6. Colmati F, Antolini E, Gonzalez ER (2008) J Alloys Compd 456:264–270

    Article  CAS  Google Scholar 

  7. Wang H, Jusys Z, Behm RJ (2006) J Power Sources 154:351–359

    Article  CAS  Google Scholar 

  8. Li H, Sun G, Cao L, Jiang L, Xin Q (2007) Electrochim Acta 52:6622–6629

    Article  CAS  Google Scholar 

  9. Lima FHB, Profeti D, Lizcano-Valbuena WH, Ticianelli EA, Gonzalez ER (2008) J Electroanal Chem 617:121–129

    Article  CAS  Google Scholar 

  10. Sen Gupta S, Datta J (2006) J Electroanal Chem 594:65–72

    Article  CAS  Google Scholar 

  11. Simões FC, Dos Anjos DM, Vigier F, Léger J-M, Hahn F, Coutanaceau C, Gonzalez ER, Tremiliosi-Filho G, De Andrade AR, Olivi P, Kokoh KB (2007) J Power Sources 167:1–10

    Article  Google Scholar 

  12. Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) J Electroanal Chem 563:81–89

    Article  CAS  Google Scholar 

  13. Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ (2006) Electrochim Acta 52:221–233

    Article  CAS  Google Scholar 

  14. Zhu M, Sun G, Xin Q (2009) Electrochim Acta 54:1511–1518

    Article  CAS  Google Scholar 

  15. Godoi DRM, Perez J, Villullas HM (2010) J Power Sources 195:3394–3401

    Article  CAS  Google Scholar 

  16. Liu P, Logadottir A, Norskov JK (2003) Electrochim Acta 48:3731–3742

    Article  CAS  Google Scholar 

  17. Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Electrochim Acta 50:5384–5389

    Article  CAS  Google Scholar 

  18. Delime F, Léger J-M, Lamy C (1999) J Appl Electrochem 29:1249–1254

    Article  CAS  Google Scholar 

  19. Jiang L, Colmenares L, Jusys Z, Sun GQ, Behm RJ (2007) Electrochim Acta 53:377–389

    Article  CAS  Google Scholar 

  20. De Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC (2002) J Phys Chem B 106:9825–9830

    Article  Google Scholar 

  21. Bergamaski K, Gonzalez ER, Nart FC (2008) Electrochim Acta 53:4396–4406

    Article  CAS  Google Scholar 

  22. Wang Y, Zhang J, Wang X, Ren J, Zuo B, Tang Y (2005) Topics in Catalysis 35:35–41

    Article  Google Scholar 

  23. Feldmann C, Metzmacher C (2001) J Mater Chem 11:2603–2606

    Article  CAS  Google Scholar 

  24. Yu W, Tu W, Liu H (1999) Langmuir 15:6–9

    Article  CAS  Google Scholar 

  25. Knupp SL, Li W, Paschos O, Murray TM, Snyder J, Haldar P (2008) Carbon 46:1276–1284

    Article  CAS  Google Scholar 

  26. Tu W, Liu H (2000) Chem Mater 12:564–567

    Article  CAS  Google Scholar 

  27. Tu W, Liu H (2000) J Mater Chem 10:2207–2211

    Article  CAS  Google Scholar 

  28. Liu Z, Guo B, Hong L, Lim TH (2006) Electrochem Commun 8:83–90

    Google Scholar 

  29. Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Chem Mater 11:882–895

    Article  CAS  Google Scholar 

  30. Chen WX, Lee JY, Liu Z (2002) Chem Commun 2588–2589

  31. Liu Z, Hong L, Tay SW (2007) Mater Chem Phys 105:222–228

    Article  CAS  Google Scholar 

  32. Wang Y, Song S, Andreadis G, Liu H, Tsiakaras P (2011) J Power Sources 196:4980–4986

    Article  CAS  Google Scholar 

  33. Kraus W, Nolze G, (2000) PowderCell for Windows, V.2.4, Federal Institute for Materials Research and Testing Berlin, Germany

  34. Von Weast RC (1966) Handbook of chemistry and physics, 47th edn. The chemical Rubber Co., Cleveland, OH

    Google Scholar 

  35. Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Solid State Ionics 32–33:198–205

    Article  Google Scholar 

  36. Klug HP, Alexander LE (1974) X-ray diffraction procedures 2nd ed. Wiley, New York

    Google Scholar 

  37. García G, Silva-Chong JA, Guillén-Villafuerte O, Rodríguez JL, González ER, Pastor E (2006) Catal Today 116:415–421

    Article  Google Scholar 

  38. Gloaguen F, Léger JM, Lamy C, Marmann A, Stimming U, Vogel R (1999) Electrochim Acta 44:1805–1816

    Article  CAS  Google Scholar 

  39. Chen YA, Bandeira IN, Rowe OM, Min G (1994) J Mater Sci Letters 13:1051–1053

    CAS  Google Scholar 

  40. Shubina TE, Koper MTM (2002) Electrochim Acta 47:3621–3628

    Article  CAS  Google Scholar 

  41. Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Léger J-M (2004) Electrochim Acta 49:3901–3908

    Article  CAS  Google Scholar 

  42. Kim JH, Choi SM, Nam SH, Seo MH, Choi SH, Kim WB (2008) Appl Catal B 82:89–102

    Article  CAS  Google Scholar 

  43. Jiang L, Sun G, Zhou Z, Zhou W, Xin Q (2004) Catal Today 93–95:665–670

    Article  Google Scholar 

  44. Strmcnik DS, Tripkovic DV, Van der Vliet D, Chang KC, Komanicky V, You H, Karapetrov G, Greeley JP, Stamenkovic VR, Markovic NM (2008) J Am Chem Soc 130:15332–15339

    Article  CAS  Google Scholar 

  45. Delime F, Léger JM, Lamy C (1998) J Appl Electrochem 28:27–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Education and Science, Republic of Serbia, Contract No. 172060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Jovanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevanović, S., Tripković, D., Rogan, J. et al. Microwave-assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation. J Solid State Electrochem 16, 3147–3157 (2012). https://doi.org/10.1007/s10008-012-1755-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1755-y

Keywords

Navigation