Skip to main content
Log in

Ethanol electro-oxidation on carbon-supported Pt3Sn/C, Pt3Cu/C and PtSnCu/C catalysts: CV and in situ FTIR study

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon-supported PtSnCu/C, Pt3Sn/C, Pt3Cu/C and Pt/C electrocatalysts were synthesized by chemical reduction of metal precursors in ethanol reflux. These materials were characterized by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and applied to the ethanol electro-oxidation in acidic medium. The reaction kinetics was studied by cyclic voltammetry and the mechanism was explored by in situ Fourier transform infrared spectroscopy (FTIR). The investigated materials presented chemical composition close to the nominal ones. XRD results indicated the formation of solid solution of Pt and Cu and/or Sn in the bi and tri-metallic materials. The particle size distribution was narrow with mean particle size of around 3 nm. A homogeneous distribution of the nanoparticles over the carbon support was evidenced. The investigated catalysts were active towards the ethanol oxidation reaction in acidic medium and led to the formation of CO2 and carbonyl compounds, as evidenced by FTIR. PtSnCu/C and Pt3Cu/C started to produce CO2 at 0.70 V vs. RHE, while this product was detected only at 0.75 V and 0.80 V vs. RHE on Pt and Pt3Sn/C, respectively, suggesting that Cu improves the dissociative adsorption of ethanol.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Direct ethanol fuel cells for transport and stationary applications–A comprehensive review. Appl Energ 145:80–103. https://doi.org/10.1016/j.apenergy.2015.02.002

    Article  CAS  Google Scholar 

  2. Barbieri G, Brunetti A, Di Vona ML, Sgreccia E, Knauth P, Hou HY, Hempelmann R, Arena F, Beretta LD, Bauer B, Schuster M, Ossó JO, Vega LF (2016) LoLiPEM: Long life proton exchange membrane fuel cells. Int J Hydrogen Energy 41:1921–1934. https://doi.org/10.1016/j.ijhydene.2015.10.096

    Article  CAS  Google Scholar 

  3. Guenot B, Cretin M, Lamy C (2017) Electrochemical reforming of dimethoxymethane in a Proton Exchange Membrane Electrolysis Cell: A way to generate clean hydrogen for low temperature fuel cells. Int J Hydrogen Energy 42:28128–28139. https://doi.org/10.1016/j.ijhydene.2017.09.028

    Article  CAS  Google Scholar 

  4. Colmati F, Antolini E, Gonzalez ER (2009) Ethanol oxidation on carbon supported (PtSn) alloy/SnO2 and (PtSnPd) alloy/SnO2 catalysts with a fixed Pt/SnO2 atomic ratio: effect of the alloy phase characteristics. J Power Sources 193:555–561. https://doi.org/10.1016/j.jpowsour.2009.04.039

    Article  CAS  Google Scholar 

  5. Abdullah S, Kamarudin SK, Hasran UA, Masdar MS, Daud WRW (2015) Development of a conceptual design model of a direct ethanol fuel cell (DEFC). Int J Hydrogen Energy 40:11943–11948. https://doi.org/10.1016/j.ijhydene.2015.06.070

    Article  CAS  Google Scholar 

  6. Altarawneh RM, Pickup PG (2017) Product distributions and efficiencies for ethanol oxidation in a proton exchange membrane electrolysis cell. J Electrochem Soc 164:F861–F865. https://doi.org/10.1149/2.0051709jes

    Article  CAS  Google Scholar 

  7. Antoline E, Gonzalez ER (2009) Polymer supports for low-temperature fuel cell catalysts. Appl Catal A 365:1–9. https://doi.org/10.1016/j.apcata.2009.05.045

    Article  CAS  Google Scholar 

  8. Queiroz AC, Siolva WO, Rogrigues IA, Lima FHB (2014) Identification of bimetallic electrocatalysts for ethanol and acetaldehyde oxidation: Probing C2-pathway and activity for hydrogen oxidation for indirect hydrogen fuel cells. Appl Catal B 160:423–435. https://doi.org/10.1016/j.apcatb.2014.05.055

    Article  CAS  Google Scholar 

  9. Soares LA, Moraism C, Napporn TW, Kokoh B, Olivi P (2016) Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation. J Power Sources 315:47–55. https://doi.org/10.1016/j.jpowsour.2016.03.013

    Article  CAS  Google Scholar 

  10. Carmo M, Sekol RC, Ding S, Kumar G, Shoers J, Taylor A (2011) Bulk metallic glass nanowire architecture for electrochemical applications. ACS Nano 5:2979–2983. https://doi.org/10.1021/nn200033c

    Article  CAS  PubMed  Google Scholar 

  11. Pearson A, O’Mullane AP (2015) A simple approach to improve the electrocatalytic properties of commercial Pt/C. Chem Commun 51:11297–11300. https://doi.org/10.1039/C5CC03834K

    Article  CAS  Google Scholar 

  12. Beyhan S, Léger J-M, Kadirgan F (2014) Understanding the influence of Ni, Co, Rh and Pd addition to PtSn/C catalyst for the oxidation of ethanol by in situ Fourier transform infrared spectroscopy. Appl Catal B 144:66–74. https://doi.org/10.1016/j.apcatb.2013.07.020

    Article  CAS  Google Scholar 

  13. Silva LSR, Melo IG, Almeida CVS, Meneses CT, Eguiluz KIB, Salazar-Banda GR (2020) The effect of Pt loading on catalytic activity of Pb0.25@Ptx/C nanocomposites toward ethanol oxidation. J Nanosci Nanotechnol 20:878–889. https://doi.org/10.1166/jnn.2020.16919

    Article  CAS  PubMed  Google Scholar 

  14. Neto AO, Nandenha J, Assumpção MHMT, Linardi M, Spinacé EV, de Souza RFB (2013) In situ spectroscopy studies of ethanol oxidation reaction using a single fuel cell/ATR-FTIR setup. Int J Hydrogen Energy 38:10585–10591. https://doi.org/10.1016/j.ijhydene.2013.06.026

    Article  CAS  Google Scholar 

  15. García G, Tsiovaras N, Pastor E, Peña MA, Fierro JLG, Martínez-Huerta MV (2012) Ethanol oxidation on PtRuMo/C catalysts: In situ FTIR spectroscopy and DEMS studies. Int J Hydrogen Energy 37:7131–7140. https://doi.org/10.1016/j.ijhydene.2011.11.031

    Article  CAS  Google Scholar 

  16. Guillén-Villafuerte O, García G, Arévalo MCRodrígues JL, Pastor E (2016) New insights on the electrochemical oxidation of ethanol on carbon-supported Pt electrode by a novel electrochemical mass spectrometry configuration. Electrochem Commun 63:48–51. https://doi.org/10.1016/j.elecom.2015.12.007

    Article  CAS  Google Scholar 

  17. Ferre-Vilaplana A, Buso-Rogero C, Feliu JM, Herrero E (2016) Cleavage of the C–C bond in the ethanol oxidation reaction on platinum. insight from experiments and calculations. J Phys Chem C 120:11590–11597. https://doi.org/10.1021/acs.jpcc.6b03117

    Article  CAS  Google Scholar 

  18. Delpeuch AB, Maillard F, Chatenet M, Soudant P, Cremers C (2016) Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: a DEMS and in situ FTIR study. Appl Catal B 181:672–680. https://doi.org/10.1016/j.apcatb.2015.08.041

    Article  CAS  Google Scholar 

  19. Vigier F, Rousseau S, Countanceau C, Legér J-M, Lamy C (2006) Electrocatalysis for the direct alcohol fuel cell. Topic Catal 40:1–4. https://doi.org/10.1007/s11244-006-0113-7

    Article  CAS  Google Scholar 

  20. Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem 563:81–89. https://doi.org/10.1016/j.jelechem.2003.08.019

    Article  CAS  Google Scholar 

  21. Friedl J, Stimming U (2013) Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrochim Acta 101:41–58. https://doi.org/10.1016/j.electacta.2012.12.130

    Article  CAS  Google Scholar 

  22. Beyhan S, Coutanceau C, Legér J-M, Napporn TW, Kardirgan F (2013) Promising anode candidates for direct ethanol fuel cell: carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method. Int J Hydrogen Enegy 38:6830–6841. https://doi.org/10.1016/j.ijhydene.2013.03.058

    Article  CAS  Google Scholar 

  23. Zhou WJ, Song SQ, Li WZ, Sun GQ, Xin Q, Kontou S, Poulianitis K, Tsiakaras P (2004) Pt-based anode catalysts for direct ethanol fuel cells. Solid State Ionics 175:1–4. https://doi.org/10.1016/j.ssi.2004.09.055

    Article  CAS  Google Scholar 

  24. Lamy C, Rousseau S, Belgsir EM, Countanceau C, Léger J-M (2004) Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49:3901–3908. https://doi.org/10.1016/j.electacta.2004.01.078

    Article  CAS  Google Scholar 

  25. Beyhan S, Legér J-M, Kadirgan F (2013) Adsorption and oxidation of acetaldehyde on carbon supported Pt, PtSn and PtSn-based trimetallic catalysts by in situ Fourier transform infrared spectroscopy. J Power Sources, 242:503–509, 2013. https://doi.org/10.1016/j.jpowsour.2013.05.112

  26. Silva JC, Parreira LS, de Souza RFB, Calegaro ML, Spinacé EV, Neto AO, Santos MC (2011) PtSn/C alloyed and non-alloyed materials: differences in the ethanol electro-oxidation reaction pathways. Appl Catal B 110:141–147. https://doi.org/10.1016/j.apcatb.2011.08.036

    Article  CAS  Google Scholar 

  27. Barroso J, Pierna AR, Blanco TC, Morallón E, Herta F (2011) Acetic acid decarboxylation by amorphous alloys with low loading of platinum. Int J Hydrogen Energy 36:12574–12582. https://doi.org/10.1016/j.ijhydene.2011.06.103

    Article  CAS  Google Scholar 

  28. Carbonio E, Colmati F, Ciapina EG, Pereira ME, Gonzalez ER (2010) Pt-Cu/C and Pd Modified Pt-Cu/C electrocatalysts for the oxygen reduction reaction in direct methanol fuel cells. J Braz Chem Soc 21:590–602. https://doi.org/10.1590/S0103-50532010000400003

    Article  CAS  Google Scholar 

  29. Ammam M, Easton EB (2013) PtCu/C and Pt(Cu)/C catalysts: Synthesis, characterization and catalytic activity towards ethanol electrooxidation. J Power Sources 222:79–87. https://doi.org/10.1016/j.jpowsour.2012.07.143

    Article  CAS  Google Scholar 

  30. De Souza RFB, Silva JCM, Simões FC, Calegaro ML, Neto AO, Santos MC (2012) New Approaches for the Ethanol Oxidation Reaction of Pt/C on Carbon Cloth Using ATR-FTIR. Int J Electrochem Sci 7:5356–5366

    Google Scholar 

  31. Liu C-W, Changc Y-W, Wei Y-C, Wang K-W (2011) The effect of oxygen containing species on the catalytic activity of ethanol oxidation for PtRuSn/C catalysts. Electrochim Acta 56:2574–2581. https://doi.org/10.1016/j.electacta.2010.11.013

    Article  CAS  Google Scholar 

  32. Magalhães MM, Colmati F (2014) Carbon-supported PtSnCu, PtCu and PtSn electrocatalysts for ethanol oxidation in acid media. J Braz Chem Soc 25:1317–1325. https://doi.org/10.5935/0103-5053.20140111

    Article  CAS  Google Scholar 

  33. Crisafulli R, Oliveira-Neto A, Linardi M, Spinacé EV (2010) Preparation of PtSn/C skeletal-type electrocatalyst for ethanol oxidation. Stud Surf Sci Catal 174:559–562. https://doi.org/10.1016/S0167-2991(10)75108-9

    Article  Google Scholar 

  34. Spinacé EV, Oliveira-Neto A, Vasconcelos TRR, Linardi M (2004) Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process. J Power Sources 137:17–32. https://doi.org/10.1016/j.jpowsour.2004.05.030

    Article  CAS  Google Scholar 

  35. González-Quijano D, Pech-Rodríguez WJ, Escalante-García JI, Vargas-Gutiérrez G, Rodríguez-Varela FJ (2014) Electrocatalysts for ethanol and ethylene glycol oxidation reactions. Part I: Effects of the polyol synthesis conditions on the characteristics and catalytic activity of Pt–Sn/C anodes. Int J Hydrogen Energy 39:16676–16685. https://doi.org/10.1016/j.ijhydene.2014.04.125

    Article  CAS  Google Scholar 

  36. Hu Y, Zhu A, Zhang Q, Liu Q (2016) Preparation of PtRu/C core–shell catalyst with polyol method for alcohol oxidation. Int J Hydrogen Energy 41:11359–11368. https://doi.org/10.1016/j.ijhydene.2016.04.133

    Article  CAS  Google Scholar 

  37. Baek S, Kim K, Know OS, Kim H, Han JW, Know OJ, Kim JJ (2020) Pd-Cu Alloy catalyst synthesized by citric acid-assisted galvanic displacement reaction for N2O reduction. J Appl Electrochem 50:395–405. https://doi.org/10.1007/s10800-019-01396-x

    Article  CAS  Google Scholar 

  38. Pongpichayaku N, Waenkeaw P, Jakmunee J, Themsirimongkon S, Saipanya S (2020) Activity and stability improvement of platinum loaded on reduced graphene oxide and carbon nanotube composites for methanol oxidation. J Appl Electrochem 50:51–62. https://doi.org/10.1007/s10800-019-01368-1

    Article  CAS  Google Scholar 

  39. Rocha TA, Linares JJ, Colmati F, Ciapina EG, Gonzalez ER (2012) Electrocatalytic activity of platinum-niobium nanoparticles for ethanol oxidation. J Electrochem Soc 159:F650-F658.10.1149/2.040210jes

  40. Queiroz MAR, Ribeiro J (2019) Catalysts of PtSn/C modified with Ru and Ta for electrooxidation of ethanol. Catalysts 9:277–293. https://doi.org/10.3390/catal9030277

    Article  CAS  Google Scholar 

  41. Antolini E (2003) Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Mater Chem Phys 78:563–573. https://doi.org/10.1016/S0254-0584(02)00389-9

    Article  CAS  Google Scholar 

  42. Oezaslan M, Hasch F, Strasser P (2012) PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media. J Electrochem Soc 159:B444–B454. https://doi.org/10.1149/2.106204jes

    Article  CAS  Google Scholar 

  43. Correa PS, da Silva EL, da Silva RF, Radtke C, Moreno B, Chinarro E, Malfatti CF (2012) Effect of decreasing platinum amount in Pt–Sn–Ni alloys supported on carbon as electrocatalysts for ethanol electrooxidation. Int J Hydrogen Energy 37:9314–9323. https://doi.org/10.1016/j.ijhydene.2012.03.022

    Article  CAS  Google Scholar 

  44. Colmati F, Antolini E, Gonzalez ER (2007) Ethanol oxidation on a carbon-supported Pt75Sn25 electrocatalyst prepared by reduction with formic acid: effect of thermal treatment. Appl Catal B 73:106–115. https://doi.org/10.1016/j.apcatb.2006.06.013

    Article  CAS  Google Scholar 

  45. Svintsitskiy DA, Kardash TY, Stonkus OA, Slavinskaya EM, Stadnichenko AI, Koscheev SV, Chupakhin AP, Boronin AI (2013) In Situ XRD, XPS, TEM, and TPR study of highly active in CO oxidation CuO nanopowders. J Phys Chem C 117:14588–14599. https://doi.org/10.1021/jp403339r

    Article  CAS  Google Scholar 

  46. dos Reis RGCS, Colmati F (2016) Electrochemical alcohol oxidation: a comparative study of the behavior of methanol, ethanol, propanol, and butanol on carbon-supported PtSn, PtCu, and Pt nanoparticles. J Solid State Electrochem 20:2559–2567. https://doi.org/10.1007/s10008-016-3323-3

    Article  CAS  Google Scholar 

  47. Colmati F, Antolini E, Gonzalez ER (2008) Effect of thermal treatment on phase composition and ethanol oxidation activity of a carbon supporeted Pt50Sn50 alloy catalysts. J Solid State Electrochem 12:591–599. https://doi.org/10.1007/s10008-007-0416-z

    Article  CAS  Google Scholar 

  48. Iwasita T, Nart FC (1990) Bulk effects in external reflection IR spectroscopy: The interpretation of adsorption data for ionic species. J Electroanal Chem 295:215–224. https://doi.org/10.1016/0022-0728(90)85017-Y

    Article  CAS  Google Scholar 

  49. Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: The effect of ethanol concentration. J Electroanal Chem 578:315–321. https://doi.org/10.1016/j.jelechem.2005.01.013

    Article  CAS  Google Scholar 

  50. González-Quijano D, Pech‐Rodríguez WJ, González‐Quijano JA, Escalante‐García JI, Morais C, Napporn TW, Rodríguez‐Varela FJ (2018) Performance and in‐situ FTIR evaluation of Pt – Sn/C electrocatalysts with several Pt: Sn atomic ratios for the ethanol oxidation reaction in acidic media. ChemElectroChem 5:3540–3547. https://doi.org/10.1002/celc.201800828

    Article  CAS  Google Scholar 

  51. de Souza EA, Giz MJ, Camara GA, Antolini E, Passos RR (2014) Ethanol electro-oxidation on partially alloyed Pt-Sn-Rh/C catalysts. Electrochim Acta 147:483–489. https://doi.org/10.1016/j.electacta.2014.09.141

    Article  CAS  Google Scholar 

  52. Colmati F, Magalhães MM, Sousa R Jr, Ciapina EG, Gonzalez ER (2019) Direct ethanol fuel cell: the influence of structural and electronic effects on Pt-Sn/C electrocatalysts. Int J Hydrogen Energy 44:28812–28820. https://doi.org/10.1016/j.ijhydene.2019.09.056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Fundação de Amparo a Pesquisa do Estado Goiás (FAPEG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support Proc. 554569/2010-8 and Proc. 475609/2008-5). In particular, M.M. Magalhães thanks the FAPEG for the scholarship (88881.134711/2016-01). We would also like to thank Tatiane Oliveira dos Santos from Laboratório de Microscopia (LABMIC) da Universidade Federal de Goiás, Goiânia-GO, Brazil for her assistance with the JEOL, JEM‑2010 HRTEM microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Colmati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magalhães, M.M., Gomes, J.F., Tremiliosi-Filho, G. et al. Ethanol electro-oxidation on carbon-supported Pt3Sn/C, Pt3Cu/C and PtSnCu/C catalysts: CV and in situ FTIR study. J Appl Electrochem 51, 173–181 (2021). https://doi.org/10.1007/s10800-020-01491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01491-4

Keywords

Navigation