Skip to main content
Log in

Improved performance of Bi2O3-doped MnO2 cathode on rechargeability in LiOH aqueous cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Many attempts have been made to make the zinc-manganese dioxide (Zn-MnO2) alkaline cell rechargeable, but all investigations are pertained to the proton insertion mechanism into MnO2. In this paper, a new class of rechargeable bismuth oxide-doped MnO2 electrode in lithium hydroxide (LiOH) electrolyte is described. The doping and the appropriate pH selection of the aqueous electrolyte improved the electrochemical performance of the aqueous cell. Hence, with an aim to understand the role of bismuth oxide (Bi2O3) during the discharge process, doped MnO2 cathodes are characterized by various techniques like secondary ion mass spectrometry, X-ray diffraction, Fourier transform infra-red spectroscopy, and transmission electron microscopy analysis. The results suggest that the influence of the large radius of the cation (Bi2O3; Bi (III) ion (0.96 Å)) cannot be integrated into the spinel structure, thereby, improving the rechargeability. The electrode reaction of doped MnO2 in LiOH electrolyte is shown to be lithium insertion while preventing the formation of a spinel structure that leads to a major formation of manganese oxy hydroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fritsch S, Navrotsky A (1996) J Am Ceram Soc 79:1761, doi:10.1111/j.1151-2916.1996.tb07993.x

    Article  CAS  Google Scholar 

  2. MacNeil DD, Lu Z, Chen Z, Dahn JR (2002) J Power Sources 108:8, doi:10.1016/S0378-7753(01)01013-8

    Article  CAS  Google Scholar 

  3. Greenwood NN, Earnshaw A (1984) Chemistry of the Elements, 1st edn. Pergamon, Oxford

    Google Scholar 

  4. Boden D, Venuto CJ, Wisler D, Wylie RB (1968) J Electrochem Soc 115:333, doi:10.1149/1.2411182

    Article  CAS  Google Scholar 

  5. Sajdl B, Micka K, Krtil P (1995) Electrochim Acta 40:2005, doi:10.1016/0013-4686(94)E0163-T

    Article  CAS  Google Scholar 

  6. McBreen J (1975) Electrochim Acta 20:221, doi:10.1016/0013-4686(75)85028-6

    Article  CAS  Google Scholar 

  7. Im D, Manthiram A, Coffey B (2003) J Electrochem Soc 150:1651, doi:10.1149/1.1622960

    Article  Google Scholar 

  8. Kordesch K, Weissenbacher M (1994) J Power Sources 51:61, doi:10.1016/0378-7753(94)01955-X

    Article  CAS  Google Scholar 

  9. Mondolini C, Laborde M, Rioux J, Andoni E, Levy-clement C (1992) J Electrochem Soc 139:954, doi:10.1149/1.2069374

    Article  Google Scholar 

  10. Kozawa A, Powers RA (1996) J Electrochem Soc 113:870, doi:10.1149/1.2424145

    Article  Google Scholar 

  11. Minakshi M, Singh P, Issa TB, Thurgate S, DeMarco R (2004) J Power Sources 130:254, doi:10.1016/j.jpowsour.2003.12.018

    Article  Google Scholar 

  12. Minakshi M, Mitchell DRG (2008) Electrochim Acta 53:6323, doi:10.1016/j.electacta.2008.04.013

    Article  CAS  Google Scholar 

  13. Minakshi M, Singh P, Carter M, Prince K (2008) Electrochem Solid-State Lett 11:145, doi:10.1149/1.2932056

    Article  Google Scholar 

  14. Bach S, Ramos JPP, Baffier N, Messina R (1995) Electrochim Acta 40:785, doi:10.1016/0013-4686(94)E0170-5

    Article  CAS  Google Scholar 

  15. Ghavami RK, Rafiei Z, Tabatabaei SM (2007) J Power Sources 164:934, doi:10.1016/j.jpowsour.2006.10.084

    Article  CAS  Google Scholar 

  16. Wroblowa HS, Gupta N (1987) J Electroanal Chem 238:93, doi:10.1016/0022-0728(87)85167-7

    Article  CAS  Google Scholar 

  17. Gao YF, Gupta N, Wroblowa HS (1987) J Electroanal Chem 238:107

    Google Scholar 

  18. Kordesch K, Gsellmann J, Peri M, Tomantschger K, Chemelli R (1981) Electrochim Acta 26:1495, doi:10.1016/0013-4686(81)90021-9

    Article  CAS  Google Scholar 

  19. Raghuveer V, Manthiram A (2005) Electrochem Commun 7:1329, doi:10.1016/j.elecom.2005.09.012

    Article  CAS  Google Scholar 

  20. Novak A (1974) Struct Bonding, Berlin 18:177–216

    Article  CAS  Google Scholar 

  21. Wu YT, Hu CC (2005) Electrochem Solid-State Lett 8:A240, doi:10.1149/1.1874673

    Article  CAS  Google Scholar 

  22. Aurbach D, Daroux ML, Faguy PW, Yeager E (1987) J Electrochem Soc 134:1611, doi:10.1149/1.2100722

    Article  CAS  Google Scholar 

  23. Qu D, Diehl D, Conway BE, Pell WG, Qian SY (2005) J Appl Electrochem 35:1111, doi:10.1007/s10800-005-9005-y

    Article  CAS  Google Scholar 

  24. Kannan AM, Bhavaraju S, Prado F, Manivel Raja M, Manthiram A (2002) J Electrochem Soc 149:483, doi:10.1149/1.1459713

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Australian Nuclear Science and Engineering for providing financial assistance (AINGRA award 08048) to enable work on SIMS facilities at Australian Nuclear Science and Technology Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manickam Minakshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minakshi, M. Improved performance of Bi2O3-doped MnO2 cathode on rechargeability in LiOH aqueous cell. J Solid State Electrochem 13, 1209–1214 (2009). https://doi.org/10.1007/s10008-008-0648-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0648-6

Keywords

Navigation