Skip to main content
Log in

Natural and synthetic solid polymer hybrid dual network membranes as electrolytes for direct methanol fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hybrid dual-network membranes comprising chitosan (CS)–polyvinyl alcohol (PVA) networks crosslinked with sulfosuccinic acid (SSA) and glutaraldehyde (GA) and modified with stabilized silicotungstic acid (SWA) are reported for their application in direct methanol fuel cells (DMFCs). Physico-chemical properties of these membranes are evaluated using thermo-gravimetric analysis and scanning electron microscopy in conjunction with their mechanical properties. Based on water sorption and proton conductivity measurements for the membranes, the optimum content of 10 wt.% SWA in the membrane is established. The methanol crossover for these membranes are studied by measuring the mass balance of methanol using density meter and are found to be lower compared to Nafion-117 membrane. The membrane–electrode assembly with 10 wt.% stabilized SWA–CS–PVA hybrid membrane with SSA and GA as crosslinking agent delivers a peak power density of 156 mW cm−2 at a load current density of 400 mA cm−2 and 88 mW cm−2 at a load current density of 300 mA cm−2, respectively, in DMFC at 70 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Dillon R, Srinivasan S, Aricò AS, Antonucci V (2004) J Power Sources 127:112–126

    Article  CAS  Google Scholar 

  2. Smitha B, Sridhar S, Khan AA (2005) J Membr Sci 259:10–26

    Article  CAS  Google Scholar 

  3. Einsla Melinda L, Seung Kim Yu, Marilyn Hawley, Hae-Seung Lee, McGrath E, Baijun Liu James, Guiver Michael D, Pivovar Bryan S (2008) Chem Mater 20:5636–5642

    Article  Google Scholar 

  4. Drioli E, Regina A, Casciola M, Oliveti A, Trotta F, Massari T (2004) J Membr Sci 228:139–148

    Article  CAS  Google Scholar 

  5. Sinha PK, Mukherjee PP, Wang CY (2007) J Mater Chem 17:3089–3103

    Article  CAS  Google Scholar 

  6. Shukla AK, Raman RK, Scott K (2005) Fuel cells 5:436–447

    Article  CAS  Google Scholar 

  7. Scott K, Shukla AK (2007) Direct methanol fuel cells: fundamentals, problems and persepectives. In: White RE, Vayenas CG, Gamboa-Aldeco MA (eds) Modern aspects of electrochemistry. Springer, New York

    Google Scholar 

  8. Miyatake K, Tani H, Yamamoto K, Tsuchida K (1996) Macromolecules 29:6969–6971

    Article  CAS  Google Scholar 

  9. Kundu PP, Sharma V, Yong GS (2007) Critical Rev Solid Stat Mater Sci 32:51–56

    Article  CAS  Google Scholar 

  10. Nicholas WD, Yossef AE (2006) J Polym Sci Part B: Polym Phys 44:2201–2225

    Article  Google Scholar 

  11. Ulbricht M (2006) Polymer 47:2217–2262

    Article  CAS  Google Scholar 

  12. Joseph JG (2007) Polym Adv Technol 18:785–799

    Article  Google Scholar 

  13. Rikukawa M, Sanui M (2000) Prog Polym Sci 25:1463–1502

    Article  CAS  Google Scholar 

  14. Wu H, Zheng B, Zheng X, Wang J, Yuan W, Jiang Z (2007) J Power Sources 173:842–852

    Article  CAS  Google Scholar 

  15. Yang CC, Lee YJ, Yang MJ (2009) J Power Sources 188:30–37

    Article  CAS  Google Scholar 

  16. Mukoma P, Jooste BR, Vosloo HCM (2004) J Power Sources 136:16–24

    Article  CAS  Google Scholar 

  17. Musale DA, Kumar A, Pleizier G (1999) J Membr Sci 154:163–173

    Article  CAS  Google Scholar 

  18. Yang T, Zall RR (1984) J Food Sci 49:91–93

    Article  CAS  Google Scholar 

  19. Anjali Devi D, Smitha B, Sridhar S, Aminabhavi TM (2005) J Membr Sci 262:91–99

    Article  CAS  Google Scholar 

  20. Wang J, Zheng X, Wu H, Zheng B, Jiang Z, Hao X, Wang B (2008) J Power Sources 178:9–19

    Article  CAS  Google Scholar 

  21. Zhiming C, Xing W, Liu C, Liao J, Zhang H (2009) J Power Sources 188:24–29

    Article  Google Scholar 

  22. Smitha B, Sridhar S, Khan AA (2004) Macromolecules 37:2233–2239

    Article  CAS  Google Scholar 

  23. Rhim JW, Park HB, Lee CS, Jun JH, Kim DS, Lee YM (2004) J Membr Sci 238:143–151

    Article  CAS  Google Scholar 

  24. Kim DS, Park HB, Rhim JW, Lee YM (2004) J Membr Sci 240:37–48

    Article  CAS  Google Scholar 

  25. Lin CW, Huang YF, Kannan AM (2007) J Power Sources 171:340–347

    Article  CAS  Google Scholar 

  26. Ariyaskul AS, Huang RY, Douglas PL, Pal R, Feng X, Chen P, Liu L (2006) J Membr Sci 280:815–823

    Article  Google Scholar 

  27. Zhou YS, Yang DZ, Chen XM, Xu Q, Nie Lu FM (2008) J Biomacromolecules 9:349–354

    Article  CAS  Google Scholar 

  28. Yang JM, Su WY, Leu TL, Wang MC (2004) J Membr Sci 236:39–51

    Article  CAS  Google Scholar 

  29. Wu LG, Zhu CL, Liu M (1994) J Membr Sci 90:199–205

    Article  CAS  Google Scholar 

  30. Hennink WE, van Nostrum CF (2002) Advanced Drug Delivery Reviews 54:13–36

    Article  CAS  Google Scholar 

  31. Manjanna KM, Pramod Kumar TM, Shivakumar B (2010) J Chem Tech Res 2:509–525

    CAS  Google Scholar 

  32. Gomez dAyala G, Malinconico M, Laurienzo P (2008) Molecules 13:2069–2106

    Article  CAS  Google Scholar 

  33. Dashtimoghadam E, Sadrabadi MMH, Moaddel H (2010) Polym Adv Technol 21:726–734

    Article  CAS  Google Scholar 

  34. Misono M (1987) Catal Rev Sci Eng 29:269–321

    Article  CAS  Google Scholar 

  35. Kozhevnikov IV (1998) Chem Rev 98:171–198

    Article  CAS  Google Scholar 

  36. Cui Z, Xing W, Liu C, Liao J, Zhang H (2009) J Power Sources 188:24–29

    Article  CAS  Google Scholar 

  37. Lin CW, Thangamuthu R, Yang CJ (2005) J Membr Sci 253:23–31

    Article  CAS  Google Scholar 

  38. Sauk J, Byun J, Kim H (2005) J Power Sources 143:136–141

    Article  CAS  Google Scholar 

  39. Aparicio M, Mosa J, Etienne M, Durán A (2005) J Power Sources 145:231–236

    Article  CAS  Google Scholar 

  40. Mohanapriya S, Bhat SD, Sahu AK, Pitchumani S, Sridhar P, Shukla AK (2009) Energy Environ Sci 2:1210–1216

    Article  CAS  Google Scholar 

  41. Ukshe EA, Lenova LS, Korosteleva AI (1989) Solid State Ionics 36:219–223

    Article  CAS  Google Scholar 

  42. Ramani V, Kunz HR, Fenton JM (2005) Electrochim Acta 50:1181–1187

    Article  CAS  Google Scholar 

  43. Langpape M, Millet JMM, Ozkan US, Boudeulle M (1999) J Catal 181:80–90

    Article  CAS  Google Scholar 

  44. Ramani V, Kunz HR, Fenton JM (2005) J Power Sources 152:182–188

    Article  CAS  Google Scholar 

  45. Sahu AK, Selvarani G, Pitchumani S, Sridhar P, Shukla AK, Narayan N, Banarjee A, Chadrakumar N (2008) J Electrochem Soc 155:B686–B695

    Article  CAS  Google Scholar 

  46. Bhat SD, Sahu AK, George C, Pitchumani S, Sridhar P, Chandrakumar N, Singh KK, Krishna N, Shukla AK (2009) J Membr Sci 340:73–83

    Article  CAS  Google Scholar 

  47. Bhat SD, Sahu AK, Jalajakshi A, Pitchumani S, Sridhar P, George C, Banerjee A, Chandrakumar N, Shukla AK (2010) J Electrochem Soc 157:B1403–B1412

    Article  CAS  Google Scholar 

  48. Mohanapriya S, Bhat SD, Sahu AK, Manokaran A, Vijayakumar R, Pitchumani S, Sridhar P, Shukla AK (2010) Energy Environ Sci 3:1746–1756

    Article  CAS  Google Scholar 

  49. Mohanapriya S, Bhat SD, Sahu AK, Manokaran A, Pitchumani S, Sridhar P, Shukla AK (2009) J Bionanoscience 3:131–138

    Article  CAS  Google Scholar 

  50. Soled S, Misceo G (1997) Mc Vicker WE, Gates A, Guiterrez, Paes J. Catal Today 36:441–450

    Article  CAS  Google Scholar 

  51. Song KY, Lee HK, Kim HT (2007) Electrochim Acta 53:637–643

    Article  CAS  Google Scholar 

  52. Perry RH, Green DW, Maloney JD (eds) (1997) Perry’s chemical engineers handbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  53. Jiang R, Chu D (2004) J Electrochem Soc 151:A69–A76

    Article  CAS  Google Scholar 

  54. Xu ZL, Yu LY, Han LF (2009) Front Chem Eng China 3:318–329

    Article  CAS  Google Scholar 

  55. Guo R, Hu C, Pan F, Wu H, Jiang Z (2006) J Membr Sci 281:454–462

    Article  CAS  Google Scholar 

  56. Horky A, Kherani NP, Xu G (2003) J Electrochem Soc 150:A1219–A1224

    Article  CAS  Google Scholar 

  57. Ganapathy S, Fournier M, Paul JF, Delevoye L, Guelton M, Amoureux JP (2002) J Am Chem Soc 124:7821–7828

    Article  CAS  Google Scholar 

  58. Kreuer KD (1996) Chem Mater 8:610–641

    Article  CAS  Google Scholar 

  59. Kreuer KD (2001) J Membr Sci 18:29–39

    Article  Google Scholar 

  60. Bhat SD, Aminabhavi TM (2007) J Membr Sci 306:173–185

    Article  CAS  Google Scholar 

  61. Dai H, Guan R, Li C, Liu J (2007) Solid State Ionics 178:339–345

    Article  CAS  Google Scholar 

  62. Meenakshi S, Bhat SD, Sahu AK, Sridhar P, Pitchumani S, Shukla AK (2011) J Appl Polym Sci. doi:10.1002/app.35522

  63. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Carbohydr Polym 76:472–481

    Article  Google Scholar 

  64. Lin CW, Huang YF, Kannan AM (2007) J Power Sources 164:449–456

    Article  CAS  Google Scholar 

  65. Shao L, Lau CH, Chung TS (2009) Int J Hydrogen Energy 34:8716–8722

    Article  CAS  Google Scholar 

  66. Shao L, Chung TS (2009) Int J Hydrogen Energy 34:6492–6504

    Article  CAS  Google Scholar 

  67. Sahu AK, Selvarani G, Bhat SD, Pitchumani S, Sridhar P, Shukla AK, Narayan N, Banarjee A, Chadrakumar N (2008) J Membr Sci 319:298–305

    Article  CAS  Google Scholar 

  68. Bhat SD, Manokaran A, Sahu AK, Pitchumani S, Sridhar P, Shukla AK (2009) J Appl Polym Sci 113:2605–2612

    Article  CAS  Google Scholar 

  69. Kukino T, Kikuchi R, Takeguchi T, Matsui T, Eguchi K (2005) Solid State Ionics 176:1845–1848

    Article  CAS  Google Scholar 

  70. Arvanitoyannis I, Kolokuris I, Nakayama A, Yamamoto N, Aiba S (1997) Carbohydrate Polym 34:9–19

    Article  CAS  Google Scholar 

  71. Lin JC, Ouyang M, Fenton JM, Kunz HR, Koberstein JT, Cutlip MB (1998) J Appl Polym Sci 70:121–127

    Article  CAS  Google Scholar 

  72. Okuhara T, Mizuno N, Misono M (1996) Advanced Synth Catal 41:113–122

    Article  CAS  Google Scholar 

  73. Bardin BB, Bordawekar SV, Nerco M, Davis RJ (1998) J Phys Chem B 102:10817–10825

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CSIR, New Delhi, for providing financial support through DU-OLP-0058 EMPOWER Scheme and Supra-Institutional Project (SIP-18) under EFYP. We are grateful to Prof. A.K. Shukla for his constant guidance and advice in this work. We thank Tintula, Jalajakshi, and Arun for their valuable support. We also thank Mr. Ravishanker, CECRI-Karaikudi, for helping us in crosssectional SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pitchumani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meenakshi, S., Bhat, S.D., Sahu, A.K. et al. Natural and synthetic solid polymer hybrid dual network membranes as electrolytes for direct methanol fuel cells. J Solid State Electrochem 16, 1709–1721 (2012). https://doi.org/10.1007/s10008-011-1587-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1587-1

Keywords

Navigation