Skip to main content
Log in

Sensitive voltammetric determination of rutin in pharmaceuticals, human serum, and traditional Chinese medicines using a glassy carbon electrode coated with graphene nanosheets, chitosan, and a poly(amido amine) dendrimer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The electrochemical behavior of rutin was investigated in pH 6.0 buffer solution using a glassy carbon electrode coated with graphene nanosheets, chitosan and a poly (amidoamine) dendrimer in pH 6.0 buffer solution. The results indicate that the modified electrode displays electrochemical redox activity towards rutin, and that the oxidation peak current of rutin increases significantly compared to that at other electrodes. The amount of immobilized graphene and dendrimer, pH value, scan rate, accumulation time and accumulation potential were optimized. The kinetic parameters, charge transfer coefficient, transfer electron number, proton transfer number, standard rate constant, were calculated. Under the optimized conditions, the oxidation peak current is proportional to the concentration of rutin in the range between 0.001 and 2.0 μmol L−1 (R = 0.9991). The detection limit is 0.6 nmol L−1 (at S/N = 3). The electrode exhibits satisfactory selectivity and reproducibility and was applied to the determination of rutin in pharmaceutical preparations, spiked human serum, and traditional Chinese medicine, with recoveries between 97.2 and 104.67%.

1. Preparation of graphene nanosheets and PAMAM modified glassy carbon electrode. 2. Graphene nanosheets and PAMAM improve the electrochemical redox of rutin. 3. The prepared electrode determines rutine with high sensitivity and selectivity. 4. The developed method can determine rutin in pharmaceutical formulations, human serum, and traditional Chinese medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen SS, Gong J, Liu FT, Mohammed U (2000) Naturally occurring polyphenolic antioxidants modulate IgE-mediated mast cell activation. Immunology 100:471

    Article  CAS  Google Scholar 

  2. Ihme N, Kiesewetter H, Jung F, Hoffmann K, Birk A, Müller A, Grützner K (1996) Leg oedema protection from a buckwheat herb tea in patients with chronic venous insufficiency: a single-centre, randomised, double-blind, placebo-controlled clinical trial. Eur J Clin Pharmacol 50:443

    Article  CAS  Google Scholar 

  3. Deschner E, Ruperto J, Wong G, Newmark H (1991) Quercetin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis 12:1193

    Article  CAS  Google Scholar 

  4. Guo R, Wei P (2008) Studies on the antioxidant effect of rutin in the microenvironment of cationic micelles. Microchim Acta 161:233

    Article  CAS  Google Scholar 

  5. Jovanovic S, Steenken S, Tosic M, Marjanovic B, Simic M (1994) Flavonoids as antioxidants. J Am Chem Soc 116:4846

    Article  CAS  Google Scholar 

  6. Rodriguez B, de la Torre M, Bruno M, Piozzi F, Vassallo N, Ciriminna R, Servettaz O (1997) A neo-clerodane diterpenoid from Teucrium asiaticum. Phytochemistry 45:383

    Article  CAS  Google Scholar 

  7. Park S, Bok S, Jeon S, Park Y, Lee S, Jeong T, Choi M (2002) Effect of rutin and tannic acid supplements on cholesterol metabolism in rats. Nutr Res 22:283

    Article  CAS  Google Scholar 

  8. Janbaz K, Saeed S, Gilani A (2002) Protective effect of rutin on paracetamol-and CCl4-induced hepatotoxicity in rodents. Fitoterapia 73:557

    Article  CAS  Google Scholar 

  9. Mata R, Rojas A, Acevedo L, Estrada S, Calzada F, Rojas I, Bye R, Linares E (1997) Smooth muscle relaxing flavonoids and terpenoids from Conyza filaginoides. Planta Med 63:31

    Article  CAS  Google Scholar 

  10. Ishii K, Furuta T, Kasuya Y (2001) Determination of rutin in human plasma by high-performance liquid chromatography utilizing solid-phase extraction and ultraviolet detection. J Chromatogr B 759:161

    Article  CAS  Google Scholar 

  11. Legnerová Z, Šatíský D, Solich P (2003) Using on-line solid phase extraction for simultaneous determination of ascorbic acid and rutin trihydrate by sequential injection analysis. Anal Chim Acta 497:165

    Article  Google Scholar 

  12. Liang Y, Song J (2008) Electrochemiluminescence from direct electro-oxidations of organic analyte rutin and its analytical application. J Electroanal Chem 624:27

    Article  CAS  Google Scholar 

  13. Wang Q, Ding F, Li H, He P, Fang Y (2003) Determination of hydrochlorothiazide and rutin in Chinese herb medicines and human urine by capillary zone electrophoresis with amperometric detection. J Pharm Biomed Anal 30:1507

    Article  CAS  Google Scholar 

  14. Vinas P, Lopez-Erroz C, Marín-Hernández J, Hernandez-Cordoba M (2000) Determination of phenols in wines by liquid chromatography with photodiode array and fluorescence detection. J Chromatogr A 871:85

    Article  CAS  Google Scholar 

  15. He C, Cui H, Zhao X, Zhao H, Zhao G (1999) Determination of rutin by flow injection with inhibited chemiluminescence detection. Anal Lett 32:2751

    Article  CAS  Google Scholar 

  16. Song Z, Hou S (2002) Sensitive determination of sub-nanogram amounts of rutin by its inhibition on chemiluminescence with immobilized reagents. Talanta 57:59

    Article  CAS  Google Scholar 

  17. Hassan H, Barsoum B, Habib I (1999) Simultaneous spectrophotometric determination of rutin, quercetin and ascorbic acid in drugs using a Kalman Filter approach. J Pharm Biomed Anal 20:315

    Article  CAS  Google Scholar 

  18. Sun W, Yang M, Li Y, Jiang Q, Liu S, Jiao K (2008) Electrochemical behavior and determination of rutin on a pyridinium-based ionic liquid modified carbon paste electrode. J Pharm Biomed Anal 48:1326

    Article  CAS  Google Scholar 

  19. Wei Y, Wang G, Li M, Wang C, Fang B (2007) Determination of rutin using a CeO2 nanoparticle-modified electrode. Microchim Acta 158:269

    Article  CAS  Google Scholar 

  20. He J, Yang Y, Yang X, Liu Y, Liu Z, Shen G, Yu R (2006) [beta]-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin. Sens Actuators B 114:94

    Article  Google Scholar 

  21. Franzoi A, Spinelli A, Vieira I (2008) Rutin determination in pharmaceutical formulations using a carbon paste electrode modified with poly (vinylpyrrolidone). J Pharm Biomed Anal 47:973

    Article  CAS  Google Scholar 

  22. Lin X, He J, Zha Z (2006) Simultaneous determination of quercetin and rutin at a multi-wall carbon-nanotube paste electrodes by reversing differential pulse voltammetry. Sens Actuators B 119:608

    Article  Google Scholar 

  23. Zeng B, Wei S, Xiao F, Zhao F (2006) Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode. Sens Actuators B 115:240

    Article  Google Scholar 

  24. Zhang Y, Zheng J (2008) Sensitive voltammetric determination of rutin at an ionic liquid modified carbon paste electrode. Talanta 77:325

    Article  CAS  Google Scholar 

  25. Malagutti A, Zuin V, Cavalheiro É, Mazo L (2006) Determination of rutin in green tea infusions using square-wave voltammetry with a rigid carbon-polyurethane composite electrode. Electroanalysis 18:1028

    Article  CAS  Google Scholar 

  26. Temerk Y, Ibrahim H, Schuhmann W (2006) Cathodic adsorptive stripping voltammetric determination of the antitumor drug rutin in pharmaceuticals, human urine, and blood serum. Microchim Acta 153:7

    Article  CAS  Google Scholar 

  27. Wu S, Sun J, Zhang D, Lin Z, Nie F, Qiu H, Chen G (2008) Nanomolar detection of rutin based on adsorptive stripping analysis at single-sided heated graphite cylindrical electrodes with direct current heating. Electrochim Acta 53:6596

    Article  CAS  Google Scholar 

  28. Tyszczuk K (2009) Sensitive voltammetric determination of rutin at an in situ plated lead film electrode. J Pharm Biomed Anal 49:558

    Article  CAS  Google Scholar 

  29. Ensafi AA, Hajian R (2006) Determination of rutin in pharmaceutical compounds and tea using cathodic adsorptive stripping voltammetry. Electroanalysis 18:579

    Article  CAS  Google Scholar 

  30. Song J, Yang J, Zeng J, Tan J, Zhang L (2010) Acetylene black nanoparticle-modified electrode as an electrochemical sensor for rapid determination of rutin. Microchim Acta 171:283

    Article  CAS  Google Scholar 

  31. Wang J, Yang S, Guo D, Yu P, Li D, Ye J, Mao L (2009) Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochem Commun 11:1892

    Article  CAS  Google Scholar 

  32. Yang S, Guo D, Su L, Yu P, Li D, Ye J, Mao L (2009) A facile method for preparation of graphene film electrodes with tailor-made dimensions with Vaseline as the insulating binder. Electrochem Commun 11:1912

    Article  CAS  Google Scholar 

  33. Wang C, Zhang L, Guo Z, Xu J, Wang H, Zhai K, Zhuo X (2010) A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim Acta 169:1

    Article  CAS  Google Scholar 

  34. Yin H, Ma Q, Zhou Y, Ai S, Zhu L (2010) Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode. Electrochim Acta 55:7102

    Article  CAS  Google Scholar 

  35. Yin H, Zhou Y, Ma Q, Ai S, Chen Q, Zhu L (2010) Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination. Talanta 82:1199

    Article  Google Scholar 

  36. Yin H, Zhou Y, Ma Q, Ai S, Ju P, Zhu L, Lu L (2010) Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochem 45:1707

    Article  CAS  Google Scholar 

  37. McAllister M, Li J, Adamson D, Schniepp H, Abdala A, Liu J, Herrera-Alonso M, Milius D, Car R, Prudhomme R (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396

    Article  CAS  Google Scholar 

  38. Tsukruk V, Rinderspacher F, Bliznyuk V (1997) Self-assembled multilayer films from dendrimers. Langmuir 13:2171

    Article  CAS  Google Scholar 

  39. Yin H, Zhou Y, Ai S, Chen Q, Zhu X, Liu X, Zhu L (2009) Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode. J Hazard Mater 174:236

    Article  Google Scholar 

  40. Yin H, Zhou Y, Ai S, Han R, Tang T, Zhu L (2010) Electrochemical behavior of bisphenol A at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAM dendrimers. Microchim Acta 170:99

    Article  CAS  Google Scholar 

  41. Chen Q, Ai S, Zhu X, Yin H, Ma Q, Qiu Y (2009) A nitrite biosensor based on the immobilization of Cytochrome c on multi-walled carbon nanotubes-PAMAM-Chitosan nanocomposite modified glass carbon electrode. Biosens Bioelectron 24:1991

    Google Scholar 

  42. Zhu X, Ai S, Chen Q, Yin H, Xu J (2009) Label-free electrochemical detection of Avian Influenza Virus genotype utilizing mult-walled carbon nanotubes-cobalt phthalocyanine-PAMAM nanocomposite modified glassy carbon electrode. Electrochem Commun 11:1543

    Article  CAS  Google Scholar 

  43. Wu Z, Ren W, Gao L, Liu B, Jiang C, Cheng H (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47:493

    Article  CAS  Google Scholar 

  44. Schniepp H, Li J, McAllister M, Sai H, Herrera-Alonso M, Adamson D, Prud’homme R, Car R, Saville D, Aksay I (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110

  45. Li J, Guo S, Zhai Y, Wang E (2009) Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem Commun 11:1085

    Article  CAS  Google Scholar 

  46. Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754

    Article  CAS  Google Scholar 

  47. Wang Y, Xiong H, Zhang X, Wang S (2010) Detection of rutin at DNA modified carbon paste electrode based on a mixture of ionic liquid and paraffin oil as a binder. Microchim Acta 170:27

    Article  CAS  Google Scholar 

  48. Zoulis NE, Efstathiou CE (1996) Preconcentration at a carbon-paste electrode and determination by adsorptive-stripping voltammetry of rutin and other flavonoids. Anal Chim Acta 320:255

    Article  CAS  Google Scholar 

  49. Du H, Ye J, Zhang J, Huang X, Yu C (2010) Graphene nanosheets modified glassy carbon electrode as a highly sensitive and selective voltammetric sensor for rutin. Electroanalysis 22:2399

    Article  CAS  Google Scholar 

  50. Bard A, Faulkner L (1980) Electrochemical methods: fundamentals and applications. Wiley, New York, p 595

    Google Scholar 

  51. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Nature Science Foundation of China (No.21075078) and the Natural Science Foundation of Shandong province of China (No. ZR2010BM005) for the financial support. The authors also thank Prof. Hui-Ming Cheng and Dr. Zhong-Shuai Wu (Institute of Metal Research, Chinese Academy of Sciences) for their kindly support of graphene nanosheets.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lusheng Zhu or Shiyun Ai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Zhou, Y., Cui, L. et al. Sensitive voltammetric determination of rutin in pharmaceuticals, human serum, and traditional Chinese medicines using a glassy carbon electrode coated with graphene nanosheets, chitosan, and a poly(amido amine) dendrimer. Microchim Acta 173, 337–345 (2011). https://doi.org/10.1007/s00604-011-0568-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0568-5

Keywords

Navigation