Skip to main content
Log in

Facile preparation of SGC composite as anode for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The silicon/graphite/carbon (SGC) composite was successfully prepared by ball-milling combined with pyrolysis technology using nanosilicon, graphite, and phenolic resin as raw materials. The structure and morphology of the as-prepared materials are characterized by X–ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). Meanwhile, the electrochemical performance is tested by constant current charge–discharge technique, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements. The electrodes exhibit not only high initial specific capacity at a current density of 100 mA g−1, but also good capacity retention in the following 50 cycles. The EIS results indicate that the electrodes show low charge transfer impedance Rsf + Rct. The results promote the as-prepared SGC material as a promising anode for commercial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu FX, Oleg B, Yushin G (2017) In situ surface protection for enhancing stability and performance of conversion–type cathodes. MRS Energy & Sustainability: A Review Journal 4:1–15

    Article  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries†. Chem Mater 22(3):587–603. https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  3. Huang B, Li X, Wang Z, Guo H (2014) A facile process for coating amorphous FePO4 onto LiNi0.8Co0.15Al0.05O2 and the effects on its electrochemical properties. Mater Lett 131:210–213. https://doi.org/10.1016/j.matlet.2014.06.002

  4. Liu YJ, Wang QL, Gao YY, Pan J, Su MR, Hai B, Zhu GY, Liu SB (2015) Effect of cooling method on the electrochemical performance of layered-spinel composite cathode Li1.1Ni0.25Mn0.75O2.3. J Alloys Compd 646:112–118. https://doi.org/10.1016/j.jallcom.2015.06.024

  5. Zhang K, Han P, Gu L, Zhang L, Liu Z, Kong Q, Zhang C, Dong S, Zhang Z, Yao J (2012) Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Inter 4(2):658–664. https://doi.org/10.1021/am201173z

    Article  CAS  Google Scholar 

  6. Nitta N, Wu FX, Lee JT, Yushin G (2015) Li–ion battery materials: present and future. Mater Today 18(5):252–264. https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  7. Wu FX, Yushin G (2017) Conversion cathodes for rechargeable lithium and lithium–ion batteries. Energy Environ Sci 10(2):435–459. https://doi.org/10.1039/C6EE02326F

    Article  CAS  Google Scholar 

  8. Tao HC, Fan LZ, Qu XH (2012) Facile synthesis of ordered porous Si@C nanorods as anode materials for lithium–ion batteries. Electrochim Acta 71:194–200. https://doi.org/10.1016/j.electacta.2012.03.139

    Article  CAS  Google Scholar 

  9. Yao Y, Zhang JJ, Xue LG, Huang T, Yu AS (2011) Influence of order in stepwise electroless deposition on anode properties of thick–film electrodes consisting of Si particles coated with Ni and Cu. J Power Sources 196:10242–10243

    Article  CAS  Google Scholar 

  10. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763. https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

  11. Chan CK, Peng HL, Liu W (2008) High–performance lithium battery anodes using silicon nanowires. Nanotechnology 3:31–35

    CAS  Google Scholar 

  12. Wen ZH, Lu GH, Mao S, Kim HJ, Cui SM, Yu KH, Huang XK, Patrick TH, Mao O, Chen JH (2013) Silicon nanotube anode for lithium–ion batteries. Electrochem Commun 29:67–70. https://doi.org/10.1016/j.elecom.2013.01.015

    Article  CAS  Google Scholar 

  13. Ma H, Cheng FY, Chen J, Zhao JZ, Li CS, Tao ZL, Liang J (2007) Nest–like silicon nanospheres for high–capacity lithium storage. Adv Mater 19(22):4067–4070. https://doi.org/10.1002/adma.200700621

    Article  CAS  Google Scholar 

  14. Kim H, Han B, Choo J, Cho J (2008) Three–dimensional porous silicon particles for use in high–performance lithium secondary batteries. Angew Chem Int Edit 47(52):10151–10154. https://doi.org/10.1002/anie.200804355

    Article  CAS  Google Scholar 

  15. Maranchi JP, Hepp AF, Kumta PN (2003) High capacity, reversible silicon thin–film anodes for lithium–ion batteries. Eletrochem Solid–State Lett 6(9):A198–A201. https://doi.org/10.1149/1.1596918

    Article  CAS  Google Scholar 

  16. Zhou R, Fan RJ, Tian ZY, Zhou Y, Guo HJ, Kou L, Zhang DP (2016) Preparation and characterization of core–shell structure Si/C composite with multiple carbon phases as anode materials for lithium ion batteries. J Alloys Compd 658:91–97. https://doi.org/10.1016/j.jallcom.2015.10.217

  17. Zhang WH, Chen XY, Yong TQ, Xu N, Guan RF, Yue L (2016) Multiwalled carbon nanotube webs welded with Si nanoparticles as high–performance anode for lithium–ion batteries. J Alloys Compd 668:216–224

    Article  CAS  Google Scholar 

  18. Du YJ, Zhu GN, Wang K, Wang YG, Wang CX, Xia YY (2013) Si/graphene composite prepared by magnesium thermal reduction of SiO2 as anode material for lithium–ion batteries. Electrochem Commun 36:107–110. https://doi.org/10.1016/j.elecom.2013.09.019

    Article  CAS  Google Scholar 

  19. Xiang HF, Zhang K, Ji G, Lee JY, Zou CJ, Chen XD, Wu JS (2011) Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 49(5):1787–1796. https://doi.org/10.1016/j.carbon.2011.01.002

    Article  CAS  Google Scholar 

  20. Ng SH, Wang J, Konstantinov K, Wexler D, Chew SY, Guo ZP, Liu HK (2007) Spray–pyrolyzed silicon/disordered carbon nanocomposites for lithium–ion battery anodes. J Power Sources 174(2):823–827. https://doi.org/10.1016/j.jpowsour.2007.06.165

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhang XG, Zhang HL, Zhao ZG, Li F, Liu C, Cheng HM (2006) Composite anode material of silicon/graphite/carbon nanotubes for Li–ion batteries. Electrochim Acta 51(23):4994–5000. https://doi.org/10.1016/j.electacta.2006.01.043

    Article  CAS  Google Scholar 

  22. Liu N, Wu H, McDowell MT, Yao Y, Wang CM, Cui Y (2012) A yolk–shell design for stabilized and scalable Li–ion battery alloy anodes. Nano Lett 6:3315–3321

    Article  CAS  Google Scholar 

  23. Wang RH, Li XH, Wang ZX, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium–ion batteries: p–toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34:131–140. https://doi.org/10.1016/j.nanoen.2017.02.037

    Article  CAS  Google Scholar 

  24. Wang RH, Wang ZX, Li XH, Zhang H (2017) Electrochemical analysis the influence of propargyl methanesulfonate as electrolyte additive for spinel LTO interface layer. Electrochim Acta 241:208–219. https://doi.org/10.1016/j.electacta.2017.04.125

    Article  CAS  Google Scholar 

  25. Wang RH, Li XH, Wang ZX, Guo HJ, He ZJ (2015) Electrochemical analysis for enhancing Interface layer of spinel Li4Ti5O12: p–toluenesulfonyl isocyanate as electrolyte additive. ACS Appl Mater Inter 7(42):23605–23614. https://doi.org/10.1021/acsami.5b07047

  26. Lai J, Guo HJ, Wang ZX, Li XH, Zhang XP, Wu FX, Yue P (2012) Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium–ion batteries. J Alloys Compd 530:30–35. https://doi.org/10.1016/j.jallcom.2012.03.096

    Article  CAS  Google Scholar 

  27. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu LB, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for Lithium-ion battery anodes with long cycle life. Nano Letter 11(7):2949–2954. https://doi.org/10.1021/nl201470j

    Article  CAS  Google Scholar 

  28. Li M, Gu J, Feng X, He H, Zeng C (2015) Amorphous–silicon@silicon oxide/chromium/carbon as an anode for lithium–ion batteries with excellent cyclic stability. Electrochim Acta 164:163–170. https://doi.org/10.1016/j.electacta.2015.02.224

    Article  CAS  Google Scholar 

  29. Hassan FM, Chabot V, Elsayed AR, Xiao XC, Chen ZW (2014) Engineered Si electrode nanoarchitecture: a scalable postfabrication treatment for the production of next-generation Li-ion batteries. Nano Lett 14(1):277–283. https://doi.org/10.1021/nl403943g

    Article  CAS  PubMed  Google Scholar 

  30. Zhou R, Guo HJ, Yang Y, Wang ZX, Li XH, Zhou Y (2016) An alternative carbon source of silicon–based anode material for lithium ion batteries. Powder Technol 295:296–302. https://doi.org/10.1016/j.powtec.2016.03.054

    Article  CAS  Google Scholar 

  31. Wang J, Liu DH, Wang YY, Hou BH, Zhang JP, Wang RS, Wu XL (2016) Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries. J Power Sources 307:738–745. https://doi.org/10.1016/j.jpowsour.2016.01.040

    Article  CAS  Google Scholar 

Download references

Funding

The project was sponsored by the National Natural Science Foundation of China (51604125, 51604124 and 51774150), the Natural Science Foundation of Jiangsu Province (BK20150506), and the Scientific Research foundation for senior talent of Jiangsu University (14JDG130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingru Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wan, H., Liu, S. et al. Facile preparation of SGC composite as anode for lithium-ion batteries. Ionics 24, 2575–2581 (2018). https://doi.org/10.1007/s11581-017-2418-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2418-x

Keywords

Navigation