Skip to main content
Log in

Electrochemical studies of LiCr x Fe x Mn2−2x O4 in an aqueous electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, LiCr x Fe x Mn2−2x O4 (x = 0, 0.05, 0.1) electrode materials were prepared by sol–gel technique and characterized by X-ray diffraction (XRD) and transmission electron microscopy or high-resolution transmission electron microscopy techniques. XRD results reveal that the Cr–Fe-co-doped LiCr x Fe x Mn2−2x O4 materials are phase-pure spinels. The electrochemical properties of the LiMn2O4, LiCr0.05Fe0.05Mn1.9O4, and LiCr0.1Fe0.1Mn1.8O4 electrodes in 5 M LiNO3 aqueous electrolyte were investigated using cyclic voltammetry, AC impedance, and galvanostatic charge/discharge methods. In the current range of 0.5–2 A g−1, the specific capacity of the LiCr0.05Fe0.05Mn1.9O4 electrode is close to that of the LiMn2O4 electrode, but the specific capacity of the LiCr0.1Fe0.1Mn1.8O4 electrode is obviously lower than that of the LiMn2O4 electrode. When the electrodes are charge/discharge-cycled at the high current rate of 2 A g−1, the LiCr0.05Fe0.05Mn1.9O4 electrode exhibits an initial specific capacity close to that of the LiMn2O4 electrode, but its cycling stability is obviously prior to that of the LiMn2O4 electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li W, Dahn JR, Wainwright DS (1994) Science 264:1115–1118

    Article  CAS  Google Scholar 

  2. Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK (1998) J Power Sources 74:198–201

    Article  CAS  Google Scholar 

  3. Li NC, Patrissi CJ, Che GL, Martin CR (2000) J Electrochem Soc 147:2044–2049

    Article  CAS  Google Scholar 

  4. Eftekhari A (2001) Electrochim Acta 47:495–499

    Article  CAS  Google Scholar 

  5. Jayalakshmi M, Mohan Rao M, Scholz F (2003) Langmuir 19:8403–8408

    Article  CAS  Google Scholar 

  6. Lee JW, Pyun SI (2004) Electrochim Acta 49:753–756

    Article  CAS  Google Scholar 

  7. Nakayama N, Nozawa T, Iriyama Y, Abe T, Ogumi Z, Kikuchi K (2007) J Power Sources 174:695–700

    Article  CAS  Google Scholar 

  8. Cvjeticanin N, Stojkovic I, Mitric M, Mentus S (2007) J Power Sources 174:1117–1120

    Article  CAS  Google Scholar 

  9. Tonti D, Torralvo MJ, Enciso E, Sobrados I, Sanz J (2008) Chem Mater 20:4783–4790

    Article  CAS  Google Scholar 

  10. Katakura K, Wada K, Kajiki Y, Yamamoto A, Ogumi Z (2009) J Power Sources 189:240–247

    Article  CAS  Google Scholar 

  11. Tian L, Yuan AB (2009) J Power Sources 192:693–697

    Article  CAS  Google Scholar 

  12. Nieto S, Majumder SB, Katiyar RS (2004) J Power Sources 136:88–98

    Article  CAS  Google Scholar 

  13. Kakuda T, Uematsu K, Toda K, Sato M (2007) J Power Sources 167:499–503

    Article  CAS  Google Scholar 

  14. Liu RS, Shen CH (2003) Solid State Ionics 157:95–100

    Article  CAS  Google Scholar 

  15. Thirunakaran R, Kim KT, Kang YM, Seo CY, Young-Lee J (2004) J Power Sources 137:100–104

    Article  CAS  Google Scholar 

  16. Kim BH, Choi YK, Choa YH (2003) Solid State Ionics 158:281–285

    Article  CAS  Google Scholar 

  17. Wang XQ, Tanaike O, Kodama M, Hatori H (2007) J Power Sources 168:282–287

    Article  CAS  Google Scholar 

  18. Shaju KM, Subba Rao GV, Chowdari BVR (2002) Solid State Ionics 148:343–350

    Article  CAS  Google Scholar 

  19. Sakunthala A, Reddy MV, Selvasekarapandian S, Chowdari BVR, Selvin PC (2010) Electrochim Acta 55:4441–4450

    Article  CAS  Google Scholar 

  20. Fey GTK, Lu CZ, Kumar TP (2003) Mater Chem Phys 80:309–318

    Article  CAS  Google Scholar 

  21. Hwang BJ, Tsai YW, Santhanam R, Hu SK, Sheu HS (2003) J Power Sources 119–121:727–732

    Article  Google Scholar 

  22. Stojkovic IB, Cvjeticanin ND, Mentus SV (2010) Electrochem Commun 12:371–373

    Article  CAS  Google Scholar 

  23. Yuan AB, Tian L, Xu WM, Wang YQ (2010) J Power Sources 195:5032–5038

    Article  CAS  Google Scholar 

  24. Wang HC, Lu CH (2003) J Power Sources 119–121:738–742

    Article  Google Scholar 

  25. Mateyshina YG, Lafont U, Uvarov NF, Kelder EM (2008) Solid State Ionics 179:192–196

    Article  CAS  Google Scholar 

  26. Ohzuku T, Ariyoshi K, Takeda S, Sakai Y (2001) Electrochim Acta 46:2327–2336

    Article  CAS  Google Scholar 

  27. Zeng RH, Li WS, Lu DS, Huang QM (2007) J Power Sources 174:592–597

    Article  CAS  Google Scholar 

  28. Bang HJ, Donepudi VS, Prakash J (2002) Electrochim Acta 48:443–451

    Article  CAS  Google Scholar 

  29. Shi SQ, Ouyang CY, Wang DS, Chen LQ, Huang XJ (2003) Solid State Commun 126:531–534

    Article  CAS  Google Scholar 

  30. Suryakala K, Kalaignan GP, Vasudevan T (2007) Mater Chem Phys 104:479–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Leading Academic Discipline Project of Shanghai Municipal Education Commission (project number: J50102). Center of Instrumental Analysis and Test of Shanghai University is gratefully acknowledged for XRD, TEM, and HRTEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anbao Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Yuan, A. & Wang, Y. Electrochemical studies of LiCr x Fe x Mn2−2x O4 in an aqueous electrolyte. J Solid State Electrochem 16, 429–434 (2012). https://doi.org/10.1007/s10008-011-1347-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1347-2

Keywords

Navigation