Skip to main content
Log in

Oxygen transport properties of nanostructured SrFe1 − x Mo x O2.5 + 3/2x (0 < x < 0.1) perovskites

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Doping of SrFeO2.5 with Мо6+ ions is accompanied by nanostructuring with the formation of 90° domains 10–20 nm in size with brownmillerite structure, as confirmed by X-ray diffraction, high-resolution electron microscopy, and Mössbauer spectroscopy. The evolution of the microstructure of SrFe1 − x Mo x O2.5 + 3/2x with temperature at low oxygen partial pressure was investigated by means of high-temperature X-ray diffraction; it was shown that nanodomain texture is stable to at least T ∼ 800 °C. Chronopotentiometry and permeability measurements demonstrate that the title compounds possess high oxygen mobility within a wide temperature range: oxygen diffusion coefficients at ambient temperatures are D = 10−13–10−12 cm2/s and oxygen fluxes at 960 °C for SrFeO3 − z (L = 1.42 mm) and SrFe0.95Mo0.05O3 − z (L = 1.5 mm) membranes in air/He gradient reach 0.25 and 0.19 μmol/(cm2 min), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bouwmeester HJM, Burgraaf AJ (1996) Dense ceramic membranes for oxygen separation. In: Burgraaf AJ, Cot L (eds) Fundamentals of inorganic membrane science and technology. Elsevier, Amsterdam, pp 435–528

    Google Scholar 

  2. Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC (2008) J Membr Sci 320:13

    Article  CAS  Google Scholar 

  3. Wattiax A, Park JC, Grenier JC, Pouchard M (1990) CR Acad Sci Ser 2 310:1047

    Google Scholar 

  4. Wattiaux A, Fournes, Demourgues LA, Bernaben N, Grenier JC, Pouchard M (1991) Solid State Commun 77:489

    Article  CAS  Google Scholar 

  5. Grenier JC, Wattiax A, Doumerc JP, Dordor P, Fournes L, Chaminade JP, Pouchard M (1992) J Solid State Chem 96:20

    Article  CAS  Google Scholar 

  6. Bezdicka P, Wattiax A, Grenier JC, Pouchard M, Hagenmuller P (1993) Z Anorg Allg Chem 619:7

    Article  CAS  Google Scholar 

  7. Rudolf P, Paulus W, Schöllhorn R (1991) Adv Mater 3:438

    Article  CAS  Google Scholar 

  8. Takayama-Muromachi E, Sasaki T, Matsui Y (1993) Phys C 207:97

    Article  CAS  Google Scholar 

  9. Nemudry A, Rudolf P, Schöllhorn R (1996) Chem Mater 8:2232

    Article  CAS  Google Scholar 

  10. Nemudry A, Rudolf P, Schöllhorn R (1998) Solid State Ionics 109:213

    Article  CAS  Google Scholar 

  11. Nemudry A, Weiss M, Gainutdinov I, Boldyrev V, Schöllhorn R (1998) Chem Mater 10:2403

    Article  CAS  Google Scholar 

  12. Nemudry A, Rogatchev A, Gainutdinov I, Schöllhorn R (2001) J Solid State Electrochem 5:450

    Article  CAS  Google Scholar 

  13. Goldberg E, Nemudry A, Boldyrev V, Schöllhorn R (1998) Solid State Ionics 110:223

    Article  CAS  Google Scholar 

  14. Goldberg E, Nemudry A, Boldyrev V, Schöllhorn R (1999) Solid State Ionics 122:17

    Article  CAS  Google Scholar 

  15. Nemudry A, Goldberg E, Aguirre M, Alario-Franco MA (2002) Solid State Sci 4:677

    Article  CAS  Google Scholar 

  16. Adler S, Russek S, Reimer J, Fendorf M, Stacy A, Huang Q, Santoro A, Lynn J, Baltisberger J, Werner U (1994) Solid State Ionics 68:193

    Article  CAS  Google Scholar 

  17. Orlovskaya N, Nicholls A, Browning N (2003) Acta Mater 51:5063

    Article  CAS  Google Scholar 

  18. Savytskii DI, Trots DM, Vasylechko LO, Tamura N, Berkowski M (2003) J Appl Crystallogr 36:1197

    Article  CAS  Google Scholar 

  19. Hodges JP, Short S, Jorgensen JD, Xiong X, Dabrowski B, Mini SM, Kimball CW (2000) J Solid State Chem 151:190

    Article  CAS  Google Scholar 

  20. Tsujimoto Y, Tassel C, Hayashi N, Watanabe T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C, Paulus W (2007) Nature 450:1062

    Article  CAS  Google Scholar 

  21. Markov AA, Leonidov IA, Patrakeev MV, Kozhevnikov VL, Savinskaya OA, Ancharova UV, Nemudry AP (2008) Solid State Ionics 179:1050

    Article  CAS  Google Scholar 

  22. Elshof JE, Bouwmeester HJM, Verweij (1995) Appl Catal A Gen 130:195

    Article  Google Scholar 

  23. Wen CJ, Ho C, Boukamp BA, Raistrick ID, Weppner W, Huggins RA (1981) Int Met Rev 5:253

    Google Scholar 

  24. Nakayama N, Takano M, Inamura S, Nakanishi N, Kosuge K (1987) J Solid State Chem 71:403

    Article  CAS  Google Scholar 

  25. D’Hondt H, Abakumov AM, Hadermann J, Kalyuzhnaya AS, Rozova MG, Antipov EV, Tendeloo GV (2008) Chem Mater 20:7188

    Article  Google Scholar 

  26. Krekels T, Milat O, Tendeloo GV, Amelinckx S, Babu TGN, Wright AJ, Greaves C (1993) J Solid State Chem 105:313

    Article  CAS  Google Scholar 

  27. Berastegui P, Hull S, Garcia-Garcia FJ, Eriksson SG (2002) J Solid State Chem 164:119

    Article  CAS  Google Scholar 

  28. Lindberg F, Svensson G, Istomin SYa, Aleshinskaya SV, Antipov EV (2004) J Solid State Chemistry 177:1592

    Article  CAS  Google Scholar 

  29. Salje EKH, Hayward SA, Lee WT (2005) Acta Cryst A61:3

    CAS  Google Scholar 

  30. Grenier JC, Ea N, Pouchard M, Hagenmuller P (1985) J Solid State Chem 58:243

    Article  CAS  Google Scholar 

  31. Alario-Franco MA, Gonzalez-Calbet JM, Vallet-Regi M (1983) J Solid State Chem 49:219

    Article  CAS  Google Scholar 

  32. Novak J, Fousek J, Maryska J, Marvan M (2005) Mater Sci Eng B 120:13

    Article  Google Scholar 

  33. Lee WT, Salje EKH, Bismayer U (2002) Phase Transit 76:81

    Google Scholar 

  34. Lee WT, Salje EKH, Bismayer U (2003) J Phys Condens Matter 15:1353

    Article  CAS  Google Scholar 

  35. Kharton VV, Yaremchenko AA, Valente AA, Sobyanin VA, Belyaevd VD, Semin GL, Veniaminov SA, Tsipis EV, Shaula AL, Frade JR, Rocha J (2005) Solid State Ionics 176:781

    Article  CAS  Google Scholar 

  36. Elshof JE, Bouwmeester HJM, Verweij H (1995) Solid State Ionics 81:97

    Article  Google Scholar 

  37. Wiik K, Aasland S, Hansen HL, Tangen IL, Odegard R (2002) Solid State Ionics 152:675

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Ischenko and A. Nadeev (Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia) for performing HREM and high-temperature XRD measurements. The work was supported by RFBR Project No. 08-03-00738, Integration projects SB RAS (No. 82), and Presidium RAS (No. 27.54).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Nemudry.

Additional information

Dedicated to Prof. R. Schöllhorn on his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savinskaya, O., Nemudry, A.P. Oxygen transport properties of nanostructured SrFe1 − x Mo x O2.5 + 3/2x (0 < x < 0.1) perovskites. J Solid State Electrochem 15, 269–275 (2011). https://doi.org/10.1007/s10008-010-1109-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1109-6

Keywords

Navigation