Skip to main content
Log in

Fast protonic conductivity in crystalline benzenehexasulfonic acid hydrates

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report on the crystal structures of two hydrates of benzenehexasulfonic acid, its water sorption isotherm, temperature- and humidity-dependent conductivity, along with 1H NMR studies. At comparable humidities and temperatures, this crystalline material shows conductivity similar to Nafion, which conducts protons via liquid water channels. We believe that the presented discovery of fast protonic conductivity in benzenehexasulfonic acid at low humidities is encouraging for further efforts in developing highly sulfonated polymers as membranes for fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gasteiger HA, Mathias MF (2002) Fundamental research and development challenges in polymer electrolyte fuel cell technology. Proton conducting membrane fuel cells III symposium. Electrochemical Society, Salt Lake City

    Google Scholar 

  2. Savadogo O (2004) Emerging membranes for electrochemical systems—part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J Power Sources 127:135–161

    Article  CAS  Google Scholar 

  3. Hogarth WHJ, da Costa JCD, Lu GQ (2005) Solid acid membranes for high temperature (>140 °C) proton exchange membrane fuel cells. J Power Sources 142:223–237

    Article  CAS  Google Scholar 

  4. Kreuer KD (2000) On the complexity of proton conduction phenomena. Solid State Ion 136:149–160

    Article  Google Scholar 

  5. Schuster M, Rager T, Noda A, Kreuer KD, Maier J (2005) About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells 5:355–365

    Article  CAS  Google Scholar 

  6. Doyle M, Rajendran G (2003) Perfluorinated membranes. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells: fundamentals, technology and applications. Wiley, New York, pp 352–395

    Google Scholar 

  7. Khiterer M, Loy DA, Cornelius CJ, Fujimoto CH, Small JH, McIntire TM, Shea KJ (2006) Hybrid polyelectrolyte materials for fuel cell applications: design, synthesis, and evaluation of proton-conducting bridged polysilsesquioxanes. Chem Mater 18:3665–3673

    Article  CAS  Google Scholar 

  8. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502

    Article  CAS  Google Scholar 

  9. Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C). J Membr Sci 185:73–81

    Article  CAS  Google Scholar 

  10. Miyatake K, Shouji E, Yamamoto K, Tsuchida E (1997) Synthesis and proton conductivity of highly sulfonated poly(thiophenylene). Macromolecules 30:2941–2946

    Article  CAS  Google Scholar 

  11. Granados-Focil S, Litt MH (2004) New class of polyelectrolytes, polyphenylene sulfonic acids and its copolymers, as proton exchange membranes for PEMFC's. Abstracts of Papers of the American Chemical Society 228:U657–U657

    Google Scholar 

  12. Kang J (2008) A new class of polyelectrolyte; poly(p-phenylene disulfonic acids) macromolecular science and engineering dissertation case. Western Reserve University, Cleveland, OH, p 313

    Google Scholar 

  13. Taninouchi Y, Hatada N, Uda T, Awakura Y (2009) Phase relationship of CsH2PO4–CsPO3 system and electrical properties of CsPO3. J Electrochem Soc 156:B572–B579

    Article  CAS  Google Scholar 

  14. Dokunikhin NS, Gaeva LA, Mezentseva GA (1972) Benzenehexasulfonic acid. Dokl Akad Nauk SSSR 206:624–626

    CAS  Google Scholar 

  15. Dokunikhin NS, Mezentseva GA (1976) Higher polysulfonic acids of benzene. Zhurnal Organicheskoi Khimii 12:621–625

    CAS  Google Scholar 

  16. Khmelnitskaya EY, Mezentseva GA, Dokunikhin NS (1980) Electrochemical reduction of benzene hexasulfonic, pentasulfonic, and tetrasulfonic acids. Sov Electrochem 16:940–945

    Google Scholar 

  17. Maksimov YM, Cheshchevoi VN, Podlovchenko BI (1985) Effect of the structures of aromatic sulfonic acids on their adsorption at platinum electrodes. Vestnik Moskovskogo Universiteta, Seriya 2: Khimiya 26:477–479

    CAS  Google Scholar 

  18. Chetkina LA, Sobolev AN, Mezentseva GA, Dokunikhin NS (1975) Structure of crystals of octahydrate of hexasodium salt of benzenehexasulfonic acid. Doklady AN SSSR 220:1343–1346

    CAS  Google Scholar 

  19. Chetkina LA, Sobolev AN (1977) The crystal structure of the hexasodium salt of benzenehaxasulfonic acid octahydrate. Acta Cryst B 33:2751–2756

    Article  Google Scholar 

  20. Berckmans VSF, Holleman AF (1925) The tetrachloronitrobenzenes, the tetrachlorodinitrobenzenes; their reaction with sodium methylate. Anales Soc Espan Fis Quim 23:358–371

    CAS  Google Scholar 

  21. Garanin EM, Tolmachev YV (2008) Apparatus for measurement of protonic conductivity of powdered materials as a function of temperature and humidity. J Electrochem Soc 155:B1251–B1254

    Article  CAS  Google Scholar 

  22. March J (1992) Advanced organic chemistry, 4th edn. Wiley, New York

    Google Scholar 

  23. Garanin EM, Tolmachev YV, Hoover RR, Adas S, Bunge SD, Gangoda M, Khitrin AK, Woods S, Malkovskiy A, Solak N, Wesdemiotis C (2010) Stability and tautomerization of cyclic anhydrides of benzenehexasulfonic acid. J Org Chem (in press)

  24. Collard DM, Sadri MJ, Vanderveer D, Hagen KS (1995) Highly twisted substituted Arenes—X-ray structure and dynamic H-NMR spectra of 1, 4-dialkyl-2, 3, 5, 6-tetrakis(alkylsulfonyl)benzenes. J Chem Soc Chem Commun 1995:1357–1358

    Article  Google Scholar 

  25. Attig R (1976) Cryst Struct Commun 5:223

    CAS  Google Scholar 

  26. Attig R, Mootz D (1976) Acta Cryst B 32:435

    Article  Google Scholar 

  27. Lundgren JO (1972) Acta Cryst B 28:1684

    Article  CAS  Google Scholar 

  28. Skakle JMS, Wardell JL (2006) Acta Cryst E 62:o1402

    Article  Google Scholar 

  29. Devlin JP, Severson MW, Mohamed F, Sadlej J, Buch V, Parrinello M (2005) Experimental and computational study of isotopic effects within the Zundel ion. Chem Phys Lett 408:439–444

    Article  CAS  Google Scholar 

  30. Koleva V, Stefov V, Cahil A, Najdoski M, Soptrajanov B, Engelen B, Lutz HD (2009) Infrared and Raman studies of manganese dihydrogen phosphate dihydrate, Mn(H2PO4)2x2H2O. Part II: region of the internal OH group vibrations. J Mol Struct 919:164–169.

    Article  CAS  Google Scholar 

  31. Zarubin DP (1999) Infrared spectra of hydrogen bonded hydroxyl groups in silicate glasses. A re-interpretation. Phys Chem Glasses 40:184–192

    CAS  Google Scholar 

  32. Baumer U, Boldt K, Engelen B, Muller H, Unterderweide K (1999) Preparation, crystal structure and IR spectra of BeSeO3 x H2O–hydrogen bonds and correlation of IR and structure data in the monohydrates MSeO3 x H2O (M=Be, Ca, Mn, Co, Ni, Zn, Cd). Zeitschrift Fur Anorganische Und Allgemeine Chemie 625:395–401

    Article  Google Scholar 

  33. Choi BK, Lee MN, Kim JJ (1989) Raman-spectra of the NaH2PO4 crystal. J Raman Spectrosc 20:11–15

    Article  CAS  Google Scholar 

  34. Colomban P (1992) Proton conductors: solids, membranes and gels—materials and devices. Chemistry of solid state materials. Cambridge University Press, Cambridge, p 581

    Google Scholar 

  35. Lutz HD (2003) Structure and strength of hydrogen bonds in inorganic solids. J Mol Struct 646:227–236

    Article  CAS  Google Scholar 

  36. Mikenda W (1986) Stretching frequency versus bond distance correlation of O–D(H)...Y (Y=N, O, S, Se, Cl, Br, I) hydrogen bonds in solid hydrates. J Mol Struct 147:1–15

    Article  CAS  Google Scholar 

  37. Novak A (1974) Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. In: Dunitz JD (ed) Structure and bonding. Springer, Berlin, pp 117–216

    Google Scholar 

  38. Unterderweide K, Engelen B, Boldt K (1994) Strong hydrogen-bonds in acid selenites—correlation of infrared spectroscopic and structural data. J Mol Struct 322:233–239

    Article  CAS  Google Scholar 

  39. Hermansson K, Gajewski G, Mitev PD (2008) Pressure-induced OH frequency downshift in Brucite: frequency–distance and frequency field correlations. J Phys Conf Ser 117:012018

    Article  Google Scholar 

  40. Bratos S, Leicknam JC, Pommeret S (2009) Time-resolved infrared spectroscopy of water. Relation between the OH stretching frequency and the O-O distance. Pol J Chem 83:737–745

    CAS  Google Scholar 

  41. Bomann D, Tilloy S, Monflier E (1999) Comparative Raman spectroscopy study of sulfonate-substituted triphenylphosphines. Vibr Spectrosc 20:165–172

    Article  Google Scholar 

  42. Baranov AI (2003) Crystals with disordered hydrogen-bond networks and superprotonic conductivity. Review. Crystallogr Rep 48:1012–1037

    Article  CAS  Google Scholar 

  43. Moller H, Mullerwarmuth W, Ruschendorf F, Schollhorn R (1987) Zeitschrift Fur Physikalische Chemie Neue Folge 151:121–131

    Google Scholar 

  44. Garanin EM, Towers MS, Toothaker PW, Laali K, Tolmachev YV (2010) Conductivity of highly sulfonated polyphenylene sulfide in the powder form as a function of temperature and humidity. Polymer Bull 64:595–605

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The funding for this work was provided by the US Department of Energy, US National Science Foundation, Ohio Department of Development, Farris Family Innovation Fund and Kent State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy V. Tolmachev.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM. 1

(PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garanin, E.M., Tolmachev, Y.V., Bunge, S.D. et al. Fast protonic conductivity in crystalline benzenehexasulfonic acid hydrates. J Solid State Electrochem 15, 549–560 (2011). https://doi.org/10.1007/s10008-010-1094-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1094-9

Keywords

Navigation