Skip to main content
Log in

On the isostructural and superprotonic Cs5H3(SO4)4·xH2O transformations: physical or chemical nature?

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

For over 20 years, researchers have agreed that when pentacesium trihydrogen tetrasulfate hydrate (Cs5H3(SO4)4·xH2O) is heated through 141 °C, the observed conductivity increase corresponds to a physical transformation: a first-order superprotonic phase transition. A careful high-temperature phase behavior examination of this acid salt was performed by means of simultaneous thermogravimetric and differential scanning calorimetry, conventional and modulated differential scanning calorimetry, and impedance spectroscopy. The results present evidence that this transformation is of chemical, instead of physical nature. The conductivity increase is an exclusive consequence of a partial thermal decomposition, where liquid water (dissolving part of the surface salt) and hygroscopic cesium pyrosulfate (Cs2S2O7), as decomposition products, behave like a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H3O+) as a charge carrier. Additionally, it was found that the intermediate temperature transformation (so-called isostructural phase transition) at around 87 °C is also of chemical nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Suzuki KI, Hayashi S (2006) 1H NMR study of proton dynamics in Cs5H3(SO4)4·xH2O. Phys Rev B 74(13):134303. https://doi.org/10.1103/PhysRevB.74.134303

    Article  CAS  Google Scholar 

  2. Haile M, Boysen DA, Chisholm CRI, Merle RB (2001) Solid acids as fuel cell electrolytes. Nature 410(6831):910–913. https://doi.org/10.1038/35073536

    Article  CAS  Google Scholar 

  3. Norby T (2001) The promise of protonics. Nature 410(6831):877–878. https://doi.org/10.1038/35073718

    Article  CAS  PubMed  Google Scholar 

  4. Yakushkin ED, Baranov AI, Grebenev VV (2007) Quasi-reversible solid-phase reaction in the Superprotonic conductor Cs5H3(SO4)4·xH2O. Phys Solid State 49(7):1353–1356. https://doi.org/10.1134/S1063783407070268

    Article  CAS  Google Scholar 

  5. Yuzyuk YI, Dmitriev VP, Loshkarev VV, Rabkin LM, Shuvalov LA (1995) Polarized Raman spectra of Cs5H3(SO4)4·H2O single crystals. Ferroelectrics167:53–58

  6. Kadlec F, Yuzyuk Y, Simon P, Pavel M, Łapsa K, Vaněk P, Petzelt J (1996) Dynamics of the glass and superionic phase transitions in Cs5H3(SO4)4·H2O protonic conductor. Ferroelectrics 176(1):179–201. https://doi.org/10.1080/00150199608223609

    Article  CAS  Google Scholar 

  7. Lim AR (2008) A study of the phase transitions and proton dynamics of the superprotonic conductor Cs5H3(SO4)4·0.5H2O single crystal with 1H and 133Cs nuclear magnetic resonance. J Solid State Chem 181(4):796–801. https://doi.org/10.1016/j.jssc.2008.01.011

    Article  CAS  Google Scholar 

  8. Fajdiga-Bulat AM, Romain F, Limage MH, Lautié A (1994) Vibrational study of the protonic superionic conductor Cs5H3(SO4)4·H2O. J Mol Struct 326:93–98. https://doi.org/10.1016/0022-2860(94)08344-4

    Article  CAS  Google Scholar 

  9. Fajdiga-Bulat AM, Lahajnar G, Dolinšek J, Slak J, Ložar B, Zalar B, Shuvalov LA, Blinc R (1995) NMR study of the fast protonic conductor Cs5H3(SO4)4·H2O. Solid State Ionics 77:101–104. https://doi.org/10.1016/0167-2738(94)00048-W

    Article  CAS  Google Scholar 

  10. Baranov AI, Sinitsyn VV, Vinnichenko VY, Jones DJ, Bonnet B (1997) Stabilisation of disordered superprotonic phases in crystals of the M5H3(AO4)4·xH2O family. Solid State Ionics 97(1-4):153–160. https://doi.org/10.1016/S0167-2738(97)00061-1

    Article  CAS  Google Scholar 

  11. Lavrova GV, Ponomareva VG, Burgina EB (2005) Proton conductivity and structural dynamics in Cs5H3(SO4)4/SiO2 composites. Solid State Ionics 176(7-8):767–771. https://doi.org/10.1016/j.ssi.2004.10.018

    Article  CAS  Google Scholar 

  12. Fukami T, Jin S, Chen RH (2006) Studies of structure, thermal, and electrical properties for Cs5H3(SO4)4 crystal. Ionics 12(4-5):257–262. https://doi.org/10.1007/s11581-006-0039-x

    Article  CAS  Google Scholar 

  13. Kadlec F, Simon P, Petzelt J, Gervais F (1996) Dynamics of the proton transport in the Cs5H3(SO4)4·xH2O superionic conductor (PCHS). Ionics 2(3-4):235–240. https://doi.org/10.1007/BF02376028

    Article  CAS  Google Scholar 

  14. Lushnikov SG, Schmidt VH, Shuvalov LA, Dolbinina VV (2000) Brillouin light scattering anomalies and new phase transition in Cs5H3(SO4)4 crystals. Solid State Commun 113(11):639–642. https://doi.org/10.1016/S0038-1098(99)00552-9

    Article  CAS  Google Scholar 

  15. Fedoseev AI, Lushnikov SG, Gvasaliya SN, Ko JH, kojima S, Shuvalov LA (2003) Dynamical properties of the partially disordered crystals of Cs5H3(SO4)4·xH2O. Ferroelectrics 285:119–132, 1, DOI: https://doi.org/10.1080/00150190390205960

  16. Baranov AI, Merinov BV, Ryabkin VS, Efremova EP (2004) Multiphase microstructure and peculiarities of the glass state in Cs5H3(SO4)4·xH2O crystal. Ferroelectrics 302(1):29–37. https://doi.org/10.1080/00150190490456150

    Article  CAS  Google Scholar 

  17. Merinov BV, Baranov AI, Shuvalov LA, Schneider J, Schulz H (1994) Structural study of Cs5H3(SO4)4·xH2O–alkali metal sulfate proton conductor. Solid State Ionics 74(1-2):53–59. https://doi.org/10.1016/0167-2738(94)90436-7

    Article  CAS  Google Scholar 

  18. Ortiz E, Vargas RA, Mellander BE (2006) Phase behaviour of the solid proton conductor CsHSO4. J Phys Condens Matter 18(42):9561–9573. https://doi.org/10.1088/0953-8984/18/42/003

    Article  CAS  Google Scholar 

  19. Lee KS (1996) Hidden nature of the high-temperature phase transitions in crystals of KH2PO4-type: is it a physical change? J Phys Chem Solids 57(3):333–342. https://doi.org/10.1016/0022-3697(95)00233-2

    Article  CAS  Google Scholar 

  20. Ortiz E, Tróchez JC, Vargas RA (2008) Phase behavior of the solid proton conductor CsHSeO4. J Phys Condens Matter 20(36):365218. https://doi.org/10.1088/0953-8984/20/36/365218

    Article  CAS  Google Scholar 

  21. Ortiz E, Vargas RA, Mellander BE (1999) On the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase? J Chem Phys 110(10):4847–4853. https://doi.org/10.1063/1.478371

    Article  CAS  Google Scholar 

  22. Ortiz E, Vargas RA, Mellander BE (1999) On the high-temperature phase transition of some KDP-family compounds: a structural phase transition? A transition to a bulk-high proton conducting phase? Solid State Ionics 125(1-4):177–185. https://doi.org/10.1016/S0167-2738(99)00173-3

    Article  CAS  Google Scholar 

  23. Ortiz E, Piñeres I, León C (2016) On the low- to high proton-conducting transformation of a CsHSO4–CsH2PO4 solid solution and its parents. Physical or chemical nature? J Therm Anal Calorim 126(2):407–419. https://doi.org/10.1007/s10973-016-5474-y

    Article  CAS  Google Scholar 

  24. Ortiz E, Vargas RA, Tróchez JC, Bornacelli J, Nuñez H (2007) On the novel superprotonic conductor material β-Cs3(HSO4)2[H2-x(P1-x, Sx)O4)] (x∼0.5): does it behave as a solid phase? Phys Stat Sol (c) 4(11):4070–4074. https://doi.org/10.1002/pssc.200675933

    Article  CAS  Google Scholar 

  25. Piñeres I, Ortiz E, De la Hoz C, Tróchez JC, León C (2017) On the nature of the KH2PO4 high-temperature transformation. Ionics 23(5):1186–1195

  26. Ortiz E, Vargas RA, Cuervo G, Mellander BE, Gustafson J (1998) On the high-temperature phase transition of RbH2PO4—a polymorphic transition? J Phys Chem Solids 59(6-7):1111–1117. https://doi.org/10.1016/S0022-3697(97)00237-0

    Article  CAS  Google Scholar 

  27. León C, Lucía ML, Santamaría J, Sánchez-Quesada F (1988) Universal scaling of the conductivity relaxation in crystalline ionic conductors. Phys Rev B 57(1):41–44

    Article  Google Scholar 

  28. Díaz-Guillén MR, Moreno KJ, Díaz-Guillén JA, Fuentes AF, Ngai KL, Garcia-Barriocanal J, Santamaria J, León C (2008) Cation size effects in oxygen ion dynamics of highly disordered pyrochlore-type ionic conductors. Phys Rev B 78(10):104304. https://doi.org/10.1103/PhysRevB.78.104304

    Article  CAS  Google Scholar 

  29. Sakashita M, Fujihisa H, Suzuki K, Hayashi S, Honda K (2007) Using X-ray diffraction to study thermal phase transitions in Cs5H3(SO4)4·xH2O. Solid State Ionics 178(21-22):1262–1267. https://doi.org/10.1016/j.ssi.2007.06.005

    Article  CAS  Google Scholar 

  30. Reading M, Luget A, Wilson R (1994) Modulated differential scanning calorimetry. Thermochim Acta 238:295–307. https://doi.org/10.1016/S0040-6031(94)85215-4

    Article  CAS  Google Scholar 

  31. Crisholm C R I (2003) Superprotonic phase transitions in solid acids: parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X=S, Se, P, As; M=Li, Na, K, NH4, Rb, Cs). Dissertation (PhD), California Institute of Technology, Pasadena, CA, p 162 http://resolver.caltech.edu/CaltechETD:etd-01292003-150309

  32. Habasaki J, León C, Ngai KL (2017) Dynamics of glassy, crystalline and liquid ionic conductors. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-42391-3

Download references

Acknowledgements

We are grateful to Professor Bengt-Erik Mellander (Department of Applied Physics, Chalmers University of Technology, Gothenburg-Sweden) for the useful discussions about the design of the project that led to this contribution.

Funding

This work was supported by the Department of Research at Universidad del Atlántico (research project No. CB40-FGI2016, Grant No. 000721-10-05-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ortiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, E., Mendoza-Estrada, V. & Romero, J. On the isostructural and superprotonic Cs5H3(SO4)4·xH2O transformations: physical or chemical nature?. Ionics 24, 2673–2680 (2018). https://doi.org/10.1007/s11581-017-2408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2408-z

Keywords

Navigation