Skip to main content
Log in

Voltammetric investigation and amperometric detection of the bisphosphonate drug sodium alendronate using a copper nanoparticles-modified electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of sodium alendronate on copper microparticle- and copper nanoparticle-modified carbon paste electrodes was investigated. In the voltammograms recorded using microparticles, a single anodic oxidation peak appeared, while using nanoparticles, two anodic peaks appeared. The anodic currents were related to the electrocatalytic oxidation of alendronate via the active species of Cu(III). The catalytic rate constant for the electrocatalytic oxidation process and the diffusion coefficient of alendronate were obtained to be 1.57 × 103 cm3 mol−1 s−1 and 2.44 × 10−6 cm2 s−1, respectively. A sensitive and time-saving detection procedure was developed for the analysis of alendronate, and the corresponding analytical parameters were reported. Alendronate was determined with a limit of detection of 11.26 μmol L−1 with a linear range of 50–6,330 μmol L−1. The proposed amperometric method was applied to the analysis of commercial pharmaceutical tablets, and the results were in good agreement with the declared values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fleisch H (1983) Bone and mineral research, annual 1. Excerpta Medica, Amsterdam

    Google Scholar 

  2. Fleisch H (1995) Bisphosphonates in bone disease, from the laboratory to the patient. Parthenon, New York

    Google Scholar 

  3. Sleeboom HP, Bijovet OLM, Van Osterom AT, Gleed JH, Oriordan JLH (1983) Lancet 2:239

    Article  CAS  Google Scholar 

  4. Ptacek P, Klima J, Macek J (2002) J Chromatogr, B 767:111

    Article  CAS  Google Scholar 

  5. Kline WF, Matuszowski BK (1992) J Chromatogr, B 583:183

    Article  CAS  Google Scholar 

  6. Daley-Yates PT, Gifford LA, Hoggart CR (1989) J Chromatogr, B 490:329

    Article  CAS  Google Scholar 

  7. Ostovic D, Stelmach C, Hulshizer B (1993) Pharm Res 10:470

    Article  CAS  Google Scholar 

  8. Kuljanin J, Jankovic I, Nedeljkovic J, Prstojevic D, Marinkovic V (2002) J Pharm Biomed Anal 28:1215

    Article  CAS  Google Scholar 

  9. Xie Z, Jiang Y, Zhang D (2006) J Chromatogr, A 1104:173

    Article  CAS  Google Scholar 

  10. Qin XZ, Tsaie W, Sakuma T, Ip DP (1994) J Chromatogr, A 686:205

    Article  CAS  Google Scholar 

  11. Al Deeb SK, Hamdan II, Al Najjar SM (2004) Talanta 64:695

    Article  CAS  Google Scholar 

  12. Tsai EW, Ip DP, Brooks MA (1992) J Chromatogr, A 596:217

    Article  CAS  Google Scholar 

  13. Kovacevic M, Gartner A, Novic M (2004) J Chromatogr, A 1039:77

    Article  CAS  Google Scholar 

  14. British Pharmacopoeia (2007) System Simulation Ltd., London, v1.16c

  15. Jortner J, Rao CNR (2002) Pure Appl Chem 74:1491

    Article  CAS  Google Scholar 

  16. Fernandez-Garcia M, Martinez-Arias A, Hanson J, Rodriguez J (2004) Chem Rev 104:4063

    Article  CAS  Google Scholar 

  17. Yadegari H, Jabbari A, Heli H, Moosavi-Movahedi AA, Karimian K, Khodadadi A (2008) Electrochim Acta 53:2907

    Article  CAS  Google Scholar 

  18. Majdi S, Jabbari A, Heli H, Yadegari H, Moosavi-Movahedi AA, Haghgoo S (2009) J Solid State Electrochem 13:407

    Article  CAS  Google Scholar 

  19. Houshmand M, Jabbari A, Heli H, Hajjizadeh M, Moosavi-Movahedi AA (2008) J Solid State Electrochem 12:1117

    Article  CAS  Google Scholar 

  20. Heli H, Jabbari A, Moosavi-Movahedi AA, Tabeshnia M (2009) Chem Anal (Warsaw) 54:619

    CAS  Google Scholar 

  21. Heli H, Jabbari A, Majdi S, Mahjoub M, Moosavi-Movahedi AA, Sheibani S (2009) J Solid State Electrochem 13:1951

    Article  CAS  Google Scholar 

  22. Liu L, Junfeng J (2006) Anal Biochem 354:22

    Article  CAS  Google Scholar 

  23. Wang J (1988) Electroanalytical techniques in clinical chemistry and laboratory medicine. Wiley-VCH, New York

    Google Scholar 

  24. Kissinger PT, Heineman WR (1996) Laboratory techniques in electroanalytical chemistry. Marcel Dekker, New York

    Google Scholar 

  25. Permentier HP, Bruins AP (2008) Mini Rev Med Chem 8:46

    Article  CAS  Google Scholar 

  26. Lin AMY, Chai CY (1998) Neurosci Res 31:171

    Article  CAS  Google Scholar 

  27. Heli H, Jabbari A, Zarghan M, Moosavi-Movahedi AA (2009) Sens Actuators, B 140:245

    Article  Google Scholar 

  28. Heli H, Majdi S, Sattarahmady N (2010) Sens Actuators, B 145:185

  29. Heli H, Majdi S, Jabbari A, Sattarahmady N, Moosavi-Movahedi AA (2010) J Solid State Electrochem (in press)

  30. Marioli JM, Kuwana T (1992) Electrochim Acta 37:1187

    Article  CAS  Google Scholar 

  31. Burke LD, Ahern MJG, Ryan TG (1990) J Electrochem Soc 137:553

    Article  CAS  Google Scholar 

  32. Shams El Din AM, Abd El Wahab FM (1964) Electrochim Acta 9:113

    Article  Google Scholar 

  33. Brisard GM, Rudnicki JD, McLarnon F, Cairns EJ (1995) Electrochim Acta 40:859

    Article  CAS  Google Scholar 

  34. Meyerstein D, Hawkridge FM, Kuwana T (1972) J Electroanal Chem 40:377

    Article  CAS  Google Scholar 

  35. Fleischmann M, Korinek K, Pletcher D (1972) J Chem Soc, Perkin Trans 10:1396

    Google Scholar 

  36. Hampson NA, Lee JB, Macdonald KI (1972) J Electroanal Chem 34:91

    CAS  Google Scholar 

  37. Steckham E (1991) In: Lund H, Hammerich O (eds) Organic electrochemistry. Marcel Dekker, New York, Chapter 15

    Google Scholar 

  38. Fleischmann M, Korinek K, Pletcher D (1971) J Electroanal Chem 31:39

    Article  CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

    Google Scholar 

  40. Miller JC, Miller JN (1994) Statistics for analytical chemistry, 4th edn. Ellis-Howood, New York

    Google Scholar 

  41. Kuljanin J, Jankovic I, Nedeljkovic J, Prstojevic D, Marinkovic V (2002) J Pharmaceut Biomed Anal 28:1215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Research Councils of Islamic Azad University and the K. N. Toosi University of Technology are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Heli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heli, H., Faramarzi, F. & Sattarahmady, N. Voltammetric investigation and amperometric detection of the bisphosphonate drug sodium alendronate using a copper nanoparticles-modified electrode. J Solid State Electrochem 14, 2275–2283 (2010). https://doi.org/10.1007/s10008-010-1069-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1069-x

Keywords

Navigation